
On Local Search in Bilevel Mixed-Integer Linear Programming

Eneko C. Clemente and Oleg A. Prokopyev†

Department of Business Administration, University of Zurich, Zurich 8032, Switzerland

Abstract. Two-level hierarchical decision-making problems, where a leader’s choice influences a follower’s

action, arise across key business and public-sector domains, from market design and pricing to defense. These

problems are typically modeled as bilevel programs and are known to be notoriously hard to solve at scale.

In single-level combinatorial optimization, especially for challenging instances, local search methods are often

used to obtain good-quality solutions when problem size limits the use of specialized solvers. Additionally,

these methods also play a key role within state-of-the-art solvers to improve feasibility bounds. Their appeal

lies in fast implementation and scalability; however, applying them to bilevel problems presents two key chal-

lenges: (i) the potentially large number of iterations required to terminate, and (ii) in each iteration, evalu-

ating the leader’s objective function requires solving the follower’s problem, which may be hard by itself. We

address the first challenge by extending approximate local optimality to the bilevel setting. This solution con-

cept guarantees that no neighboring solution improves the leader’s objective function beyond some limit. To

overcome the second challenge, we introduce the concept of weak local optimality, yet another generalization.

Specifically, instead of computing the follower’s rational response, we evaluate the leader’s objective function

using either a follower’s approximate solution, or simply a feasible decision. By combining these two con-

cepts, we demonstrate that a (weak) approximate local optimal solution can be efficiently computed through

a local search-based approach. Computational experiments demonstrate that the proposed method signifi-

cantly reduces runtime compared to standard local search while maintaining comparable solution quality.

Keywords: bilevel mixed-integer optimization, local search, computational complexity

1 Introduction

Bilevel programs form a broad class of two-level hierarchical decision-making problems with two

distinct decision-makers, a leader and a follower. Specifically, the leader (or the upper-level decision-

maker), whose perspective is modeled and optimized, acts first and initiates the decision-making

process. After the leader makes their decision, the follower (or the lower-level decision-maker)

solves their own optimization problem, which, in turn, depends on the decision taken by the leader.

The leader’s objective function and the upper-level constraints may contain decision variables from

†Emails: {eneko.clemente, oleg.prokopyev}@business.uzh.ch

1

both the leader and the follower. Consequently, the leader has to anticipate the follower’s rational

response when making their own decision. Bilevel programming offers significant modeling capa-

bilities, particularly in applications that involve settings with decentralized decision-making pro-

cesses. Accordingly, bilevel programs arise in various application domains, including resource allo-

cation (Correa et al. 2017; Khorramfar et al. 2022), facility location (Dan and Marcotte 2019; Lin et

al. 2024), price setting (Labbé et al. 1998; Kuiteing et al. 2017), network and market design (Tawfik

and Limbourg 2019; Bichler and Waldherr 2022) as well as law enforcement (Arslan et al. 2018) and

defense (Gutin et al. 2015; Dahan et al. 2022) related problems. We refer to recent surveys by Klein-

ert et al. (2021b) and Beck et al. (2023) for a comprehensive overview of bilevel programming.

Formally, we consider bilevel mixed-integer linear programs (bilevel MILPs) of the form:

[BP] : z∗ := min
x,y∗(x)

a⊤x+ d⊤y∗(x) (1a)

s.t. x ∈ X :=
{
x ∈ {0, 1}n : Hx ≤ h

}
, (1b)

y∗(x) ∈ argmax
y∈Y(x)

c⊤y, (1c)

where a ∈ Qn
+, d ∈ Qm

+ , c ∈ Qm, H ∈ Qp×n and h ∈ Qp. We refer to x ∈ X as a leader’s feasible

decision, where X is the leader’s feasible set, and y∗(x) as the follower’s optimal decision (also

known as the follower’s rational response). For a given x ∈ X , the follower’s feasible set is:

Y(x) :=
{
y ∈ {0, 1}m1 × Rm2

+ : Fy + Lx ≤ f
}
, (2)

where m := m1 +m2, F ∈ Qq×m, L ∈ Qq×n and f ∈ Qq. Accordingly, the follower’s problem can

represent any mixed-integer linear program (MILP).

In this paper, we also examine two special classes of (2). Specifically, we consider follower’s

decisions that consist solely of either binary (i.e., m2 = 0), or continuous (i.e., m1 = 0) variables:

Yb(x) :=
{
y ∈ {0, 1}m : Fy + Lx ≤ f

}
and Yc(x) :=

{
y ∈ Rm

+ : Fy + Lx ≤ f
}
.

If the follower’s feasible set is defined by either Yb or Yc, then the corresponding bilevel MILPs of

the form (1) are referred to as [B-BP] and [C-BP], respectively.

Local and global optimality. Local search methods are typically used in two ways in single-

level combinatorial optimization. First, they are integrated into MILP solvers (Gurobi 2024; IBM

2024), which combine bounding techniques, such as refined cutting-plane methods to tighten lower

bounds, with a set of heuristics, many of which rely on local search, to enhance feasibility bounds.

2

Second, local search is widely applied as a standalone heuristic to find good-quality solutions to

hard combinatorial problems (Aarts and Lenstra 2003). In this role, they are particularly valuable

when global optimality is out of reach, as they still provide meaningful optimality guarantees.

In comparison, the use of local search methods in bilevel MILPs remains relatively limited; see

Section 2. Our goal is not to compete with global optimization methods, as specially constructed in-

stances can exhibit local optimal solutions that are arbitrarily far from the global optimum. Rather,

we aim to identify weaker optimality guarantees that can be efficiently achieved in bilevel MILPs.

Main contributions. In this study, we identify two key challenges that limit the practical

use of local search for bilevel MILPs. First, the algorithm may require an exponential number of

improving steps before converging. Second, at each step, evaluating the leader’s objective function

involves solving the follower’s problem, which is often computationally demanding in real-world

settings. This work directly addresses these challenges, and our main contributions are as follows:

(i) We introduce three generalizations of local optimality in bilevel MILPs and

explore their relationships: To address the exponential worst-case behavior of local search, we

extend the concept of ε-local optimality, which is initially proposed by Orlin et al. (2004) for single-

level problems, to the bilevel setting. A leader’s feasible decision that is ε-local optimal may still

have better leader’s feasible decisions in its neighborhood. Yet, these improving decisions can only

reduce the leader’s objective function value by a relatively small amount, which is “bounded” by ε.

Next, we introduce weak local optimality, where the leader’s objective function is computed with

an inexact follower rather than the follower’s rational response. The inexact follower’s response

can be either an approximate solution with a performance guarantee δ or simply a feasible solution

to the lower-level problem. This way, we can leverage efficient approximation schemes that are

available for many classes of combinatorial optimization problems. Alternatively, we resort to

off-the-shelf MILP solvers with a predefined optimality gap whenever such scheme is not available.

Lastly, we combine these concepts and define weak ε-local optimality. In particular, we demon-

strate that if the follower’s problem admits a δ-approximation algorithm, then any weak ε-local

optimal solution is, in fact, O(ε+ δ)-locally optimal.

(ii) We propose a local search-based algorithm that finds a weak ε-local optimal

solution in a polynomial number of improvement steps for the leader: Our approach,

referred to as (ε,A)-LSA, builds on two main ideas. First, the leader’s objective function is scaled

in a “strategic” manner, akin to the ε-local search by Orlin et al. (2004). Second, we evaluate

3

the leader’s objective function by using an inexact follower’s response, preferably a δ-approximate

solution, if one is available. We demonstrate that the proposed algorithm converges in a polynomial

number of improving steps for the leader (where the leader’s objective might be evaluated with an

inexact follower’s response) to a weak ε-local optimal solution. Additionally, we identify a sufficient

condition and specific problem classes, where our approach return a weak local optimal solution.

(iii) We illustrate numerically the trade-offs revealed by our theoretical analysis:

In particular, our numerical results also support that the proposed approach reduces the runtime

compared to the standard local search, while still returning solutions of comparable quality. We also

show that neither scaling the leader’s objective function nor solving approximately the follower’s

problem alone is sufficient; both must be employed in a joint manner.

Our technical assumptions. For any given leader’s feasible decision, the follower’s prob-

lem (1c) is a mixed-integer linear program that may have multiple optimal solutions. Consequently,

the leader’s problem [BP] may not be well-defined, as it depends on which optimal decision is cho-

sen by the follower (Kleinert et al. 2021b). In this study, we focus on optimistic bilevel programs,

where the follower selects the optimal decision to the lower-level problem that is most favorable to

the leader. Accordingly, for any x ∈ X , the follower’s rational response is given by:

y∗(x) ∈ argmin
y∈Y(x)

{
d⊤y : c⊤y ≥ φ(x)

}
, (3)

where φ(x) represents the follower’s value function and is defined by φ(x) := max
{
c⊤y : y ∈ Y(x)

}
.

Any optimal decision y∗(x) picked by the follower, which satisfies (3), leads to the same leader’s

objective function value. Therefore, we assume, without loss of generality, that if the follower’s

optimal decision y∗(x) satisfies (3), then it is uniquely determined. Consequently, y∗(·) can be

defined as a function that returns the follower’s rational response given a leader’s feasible decision x.

While the optimistic assumption is, perhaps, the most commonly used in the bilevel optimization

literature (Kleinert et al. 2021b), there also exists the pessimistic model in which the follower

chooses an optimal decision that is the least favorable from the leader’s perspective (Wiesemann et

al. 2013). Furthermore, the optimistic and pessimistic responses can be considered simultaneously,

resulting in what is known as the strong-weak model (Lagos and Prokopyev 2023).

To simplify notation and analysis, we focus on the setting in which the leader’s problem does

not contain coupling constraints, i.e., the follower’s rational response does not appear in (1b). Cou-

pling constraints may be required in some practical application settings; thus, we discuss how our

approach may accommodate these constraints in Appendix A. Moreover, recent work has shown

4

that, when both the leader’s and follower’s decision variables are continuous, coupling constraints

do not increase modeling power since they can be incorporated as penalty terms in the leader’s ob-

jective function (Henke et al. 2025). However, identifying appropriate penalizations, and extending

this result to bilevel MILPs, remains an open question.

Finally, the following assumptions are made throughout this paper:

• A1: X ̸= ∅, and Y(x) ̸= ∅ for all x ∈ X .

• A2: There exists U > 0 such that ∥y∥1 ≤ U for all y ∈ Y (x) and for all x ∈ X .

• A3: a ∈ Rn
+ and d ∈ Rm

+ .

• A4: z∗ > 0 and c⊤y ≥ 0 for all y ∈ Y (x) and for all x ∈ X .

Detailed justification of these technical assumptions is provided in Appendix A.

The remainder of the paper. Section 2 provides an overview of the relevant literature. In

Section 3, we introduce generalizations of local optimality to the bilevel setting, which are then

explored in details in Section 4. Section 5 presents the weak approximate local search algorithm,

or (ε,A)-LSA, and discusses its theoretical properties, including its worst-case performance. Sec-

tion 6 offers numerical evidence supporting our theoretical findings. The paper concludes with

Section 7. All proofs, additional discussions, and extensions of our approach, are provided in the

appendix. Finally, Table 1 summarizes the solution concepts and algorithms discussed in this study.

Follower’s response
Algorithm

Exact (Section 3.1) Inexact (Section 3.2)

Leader
local optimality weak local optimality (weak) local search

ε-local optimality weak ε-local optimality (ε,A)-LSA (Section 5)

Table 1: Overview of the solution concepts and algorithms considered throughout the paper. If the follower’s
problem is solved exactly, then we examine local optimality and ε-local optimality. Conversely, if the follower’s
problem is not necessarily solved exactly, say, with an algorithm A, then we explore weak local optimality and weak
ε-local optimality. The relations between these solution concepts are further discussed in Section 4.

2 Literature review

Bilevel optimization. The significant modeling capabilities of bilevel programs come with

increased computational complexity. Indeed, if both the leader’s and the follower’s decision variables

are all continuous, then bilevel programs are known to be NP-hard (Ben-Ayed and Blair 1990). In

fact, even finding a local optimal solution is NP-hard (Prokopyev and Ralphs 2024). Moreover, it

is worth noting that even special classes of bilevel programs, such as linear min/max programs,

5

remain strongly NP-hard (Hansen et al. 1992). This complexity extends to pessimistic (Wiesemann

et al. 2013) and strong-weak (Lagos and Prokopyev 2023) models.

Given the inherent difficulty of solving bilevel programs, considerable efforts are directed at

developing specialized algorithms for various classes of problems. Primary examples include inter-

diction games (Caprara et al. 2016; Fischetti et al. 2019), matching interdiction (Zenklusen 2010;

Dinitz and Gupta 2013), and critical node detection (Mahdavi Pajouh et al. 2014; Furini et al.

2020) as well as decentralized versions of various network-related (Correa et al. 2017) and facility

location (Dan and Marcotte 2019) problems. Further insights into solution methods for various

classes of bilevel MILPs can be found in the survey by Kleinert et al. (2021b).

For bilevel MILPs with continuous follower’s decision variables, exact methods are reasonably

well-established and typically rely on reformulating the problems as single-level MILPs by lever-

aging Karush–Kuhn–Tucker conditions (Audet et al. 1997; Dempe and Zemkoho 2013) or strong

duality (Zare et al. 2019; Kleinert et al. 2021a; Kleinert and Schmidt 2023). On the other hand,

if the follower’s decision variables involve integrality restrictions, then the lower-level problem be-

comes non-convex. Consequently, reformulation-based approaches result in intractable models, even

for modest instance sizes; see, e.g., Tavaslıoğlu et al. (2019). In fact, introducing binary decision

variables for the follower escalates the computational complexity to Σp
2-hardness (Jeroslow 1985).

Hence, under reasonable assumptions, these models cannot be reformulated as polynomial-sized

single-level MILPs and hence, need to be solved with more sophisticated methods.

Exact methods for solving bilevel MILPs often exploit branch-and-bound techniques, as intro-

duced in the seminal work by (Moore and Bard 1990). Other methods in the literature rely on

decomposition (Saharidis and Ierapetritou 2009; Bolusani and Ralphs 2022) or parametric program-

ming (Domı́nguez and Pistikopoulos 2010; Köppe et al. 2010; Lozano and Smith 2017; Tavaslıoğlu

et al. 2019) techniques. Although a few basic solvers for bilevel MILPs based on branch-and-cut

ideas are available (Fischetti et al. 2017; Tahernejad et al. 2020), these solvers are effective only for

relatively small-sized instances. Broadly speaking, it can be argued that exact methods for solving

general types of bilevel MILPs are still in an early stage of their development.

Local search in the single-level setting. Advances in solving MILPs, as we mentioned

earlier, have also benefited from the use of heuristics to obtain better feasibility bounds. The

vast majority of these heuristics are based on local search ideas, and are heavily exploited for

finding approximate or high-quality solutions to combinatorial optimization problems; see, to name

a few, the studies by Kanellakis and Papadimitriou (1980), Arkin and Hassin (1998), Schuurman

6

and Vredeveld (2007), and Bertsimas et al. (2013). On the other hand, local search can take an

exponential number of improving steps to converge; see, for instance, a classical example by Chandra

et al. (1999) for the traveling salesman problem. This worst-case behavior is addressed by Orlin

et al. (2004), where the solution concept of ε-local optimality is introduced. Importantly, it is

shown that an ε-local optimal solution to any single-level combinatorial optimization problem can

be found within a polynomial number of improving steps in the model’s dimension and 1/ε.

Local search in the bilevel setting. Recent advances in bilevel MILPs have largely been

driven by the developments in cutting-plane techniques. Heuristic methods that are proposed in the

literature often adapt established single-level strategies to the bilevel context (Wen and Huang 1996;

Nishizaki and Sakawa 2005) and focus on specific problem classes (Brotcorne et al. 2001; Dussault

et al. 2006; Fischetti et al. 2018). Yet, these studies typically emphasize the computational perfor-

mance of their approaches, while giving limited attention to the theoretical worst-case analysis.

From the leader’s perspective, the results on local optimality available in the existing liter-

ature predominantly focus on bilevel programs with continuous variables at both levels (Dempe

1987; Still 2002). Alternative concepts, such as stationary solutions, have also been studied in

the literature (Kleinert and Schmidt 2021). Additionally, local optimality can be approached from

the follower’s perspective (Shi et al. 2023), providing bounds on the leader’s objective function by

assuming the follower uses a local optimal solution to its 0–1 problem.

Naturally, local search ideas can be extended from the single-level setting to bilevel MILPs.

However, a significant distinction arises in the bilevel setting due to the lower-level problem. In-

deed, evaluating the leader’s objective function requires solving the follower’s problem, which is an

MILP by itself and hence, NP-hard, in general (Garey and Johnson 1979). Thus, searching for an

improving solution in the neighborhood of a leader’s feasible decision may require solving exactly

multiple MILPs, which can be computationally prohibitive in practical settings.

3 Local optimality criteria

In this section, we extend the concepts of local optimality as originally introduced in single-level

combinatorial optimization (Aarts and Lenstra 2003) to the bilevel setting. A local optimal solution

is always defined with respect to some neighborhood, which is a subset of the leader’s feasible set

containing decisions that are sufficiently “close” to each other.

Neighborhood. Formally, given the leader’s feasible set X ⊆ {0, 1}n, we define the neighbor-

hood function with respect to X as a mapping NX from the set X to the set of all possible subsets 2X

7

of X , i.e., NX : X −→ 2X . Specifically, for any x in X , NX (x) ⊆ X represents a set of neighbors of

x, which is referred to as the neighborhood of x. Moreover, we assume that x ∈ NX (x). Throughout

this study, the terms of a neighborhood function and a neighborhood are employed interchangeably.

There exists a rich variety of neighborhoods that have been explored in the combinatorial op-

timization literature (Deineko and Woeginger 2000; Ahuja et al. 2002; Altner et al. 2013). Among

those, the k-flip neighborhood function is, perhaps, the most commonly used one due to its sim-

plicity (Aarts and Lenstra 2003). Given a set X ⊆ {0, 1}n, x ∈ X , and an integer k ≥ 1, the k-flip

neighborhood function at x with respect to X is defined as:

N
(k)
X (x) := {x̃ ∈ X : ∥x̃− x∥1 ≤ k} , (4)

where ∥·∥1 represents the 1-norm, also known the Hamming distance for 0-1 vectors.

3.1 Exact follower: local and approximate local optimality

Local optimality. A local optimal solution to [BP] is simply a leader’s feasible decision, which

has no neighbor with a better leader’s objective function value. Formally:

Definition 1. Given a neighborhood function NX , a leader’s feasible decision x0 ∈ X is said to be

locally optimal with respect to NX if and only if:

a⊤x0 + d⊤y∗(x0) ≤ a⊤x+ d⊤y∗(x) (5)

for all x ∈ NX (x
0). If there exists x ∈ NX (x

0) such that (5) does not hold, then x is referred to as

a leader’s improving solution, or simply a better solution in the neighborhood of x0. ■

In combinatorial optimization, a local optimal solution is typically found using the standard

local search algorithm or, shortly, LSA (Aarts and Lenstra 2003). This approach can be extended to

bilevel MILPs to obtain a local optimal solution to [BP]. The algorithm begins with a feasible deci-

sion for the leader and explores its neighborhood to identify a better solution (neighborhood search).

If an improving solution is found, then the algorithm updates to this new feasible decision (improving

step), and the process repeats until no further improvements are possible. Hence, at each iteration,

LSA requires solving the lower-level problem (1c) to evaluate the leader’s objective function.

On the complexity of local search. In bilevel programming, verifying whether a given

leader’s feasible decision is locally optimal is NP-hard, even when both the leader’s and follower’s

decision variables are continuous; see Vicente et al. (1994). Furthermore, It comes without surprise

that local search requires an exponential number of improving steps to converge for the leader in

the worst case. We explicitly construct a class of bilevel MILPs, where the lower-level problem is a

8

linear program (LP) with binary optimal decisions, that exhibit this exponential behavior for LSA.

Since this phenomenon is common for many combinatorial optimization problems, the detailed

construction and the related discussion are relegated to Appendix B.1.

This result is negative, as it essentially implies that, in the worst case, local search algorithms

offer no computational advantage over exhaustive global search. While we acknowledge that such

extreme cases may be rare in practice, they highlight a key limitation: the decision-maker has no

control over the runtime of these algorithms. As we later show in our computational study, even

for relatively modest instance sizes, standard local search may converge “slowly”; see Section 6.

Approximate local optimality. The concept of ε-local optimality, which generalizes the

traditional definition of local optimality, is introduced by Orlin et al. (2004) to address the ex-

ponential worst-case behavior of local search. We extend the definition of an approximate local

optimal solution, or ε-local optimal solution, to the bilevel setting as follows:

Definition 2. Given ε ≥ 0, and a neighborhood function NX , a leader’s feasible decision xε ∈ X

is said to be ε-locally optimal with respect to NX if and only if:

a⊤xε + d⊤y∗(xε) ≤ (1 + ε)
(
a⊤x+ d⊤y∗(x)

)
for all x ∈ NX (x

ε). ■

If ε = 0, then ε-local optimality coincides with local optimality. Conversely, if xε is ε-locally

optimal for a given ε > 0, then there may still exist better leader’s feasible decisions in its neigh-

borhood. However, any such improvement might only reduce the leader’s objective function value

by ε in relative terms. For example, if the leader’s objective function value at xε is 1, then no

leader’s feasible decision in its neighborhood has a leader’s objective strictly less than (1 + ε)−1.

Furthermore, if both the leader’s and the follower’s variables are all binary, then verifying

whether a given leader’s feasible decision is an ε-local optimal solution (for any ε > 0) is also

NP-hard. While being rather technical, this observation is not that surprising. Therefore, as in the

above, this result and its proof are relegated to Appendix B.2 for conciseness. Next, to address the

difficulty arising with the need of solving the follower’s problem, we introduce the notion of weak lo-

cal optimality, where the leader’s objective function is evaluated using an inexact follower’s response.

3.2 Inexact follower: weak and weak approximate local optimality

Solving the follower’s problem may be challenging, and hence, one may be interested in evalu-

ating the leader’s objective function using a follower’s decision of “sufficiently good quality” rather

9

than the follower’s rational response. In fact, the idea of relaxing the optimality criteria for the

follower is not new and has been exploited with some success (Zare et al. 2020; Shi et al. 2023).

Approximate solutions. Formally, let δ ∈ [0, 1), x ∈ X be a leader’s feasible decision, and A

be an algorithm that returns a unique feasible solution yA(x) to the lower-level problem (1c) for any

leader’s feasible decision. Then, yA(x) is said to be a δ-approximation (or, simply, δ-approximate

solution) of the follower’s optimal solution y∗(x) if and only if:

(1− δ)c⊤y∗(x) ≤ c⊤yA(x) (6)

for any x ∈ X . Moreover, if A satisfies (6), then A is referred to as a δ-approximation algorithm.

In particular, we do not make any restriction on A being a polynomial-time algorithm in (6).

Note that if the follower’s decision variables are restricted to be all binary, then the combinato-

rial structure of the lower-level problem (1c) can occasionally be leveraged to find an approximate

solution efficiently; see, e.g., Vazirani (2001). Accordingly, if such procedure exists, then the per-

formance guarantee is either a known constant or can somehow be controlled.

Conversely, a polynomial-time approximation algorithm for the lower-level problem does not

necessarily exist. Hence, another option is to use an off-the-shelf solver, which can solve MILPs

with a predefined optimality gap. Then, the resulting solution can serve as a δ-approximation to

the follower’s problem. However, such solvers typically rely on enumerative approaches, and are

not guaranteed, in general, to find approximate solutions to MILPs in polynomial time.

Weak local optimality. The definition of local optimality can be generalized by assuming that

the leader’s objective function is computed using a follower’s feasible decision obtained by a given

algorithm A instead of the follower’s rational (exact) response. When referring to algorithms to

solve the follower’s problem (1c), we assume, without loss of generality, that such algorithms always

return a unique feasible decision for each x ∈ X . Examples include δ-approximation algorithms as

outlined in (6), or specialized procedures. Formally, weak local optimality is defined as follows:

Definition 3. Let NX be a neighborhood function and A be an algorithm that returns a unique

feasible solution yA(x) to the lower-level problem (1c). Then, a leader’s feasible decision x0 ∈ X

is said to be weakly local optimal with respect to NX and A if and only if:

a⊤x0 + d⊤yA(x0) ≤ a⊤x+ d⊤yA(x) (7)

for any x ∈ NX (x
0). ■

If there exists x in the neighborhood of x0 that does not satisfy (7), then, following the previous

discussion with the exact follower’s response, x is referred to as an improving solution for the leader

10

or, simply, a better solution in the neighborhood of x0. Moreover, for any x ∈ X , we refer to the

follower’s feasible decision yA(x) obtained by calling A as the inexact follower’s decision. Similarly,

the leader’s objective function, where the follower’s optimal decision y∗(x) is replaced by yA(x),

is referred to as the leader’s objective function value with an inexact follower.

The difference between the leader’s objective function values with an inexact follower at x0 ∈ X

and x ∈ NX (x
0), is denoted by ∆A(x0,x,a,d), and referred to as the (absolute) gap. Formally:

∆A (x0,x,a,d
)
:= a⊤x0 + d⊤yA(x0)−

(
a⊤x+ d⊤yA(x)

)
. (8)

If ∆A(x0,x,a,d) is strictly positive, then x is an improving solution in terms of the leader’s

objective function with an inexact follower. Conversely, if ∆A(x0,x,a,d) is non-positive for any x

in the neighborhood of x0, then x0 is weakly local optimal.

On the complexity of weak local search. Weak local optimal solutions can be obtained

by using weak local search, an extension of local search, where the leader’s objective function

is computed with an inexact follower’s response rather than the follower’s optimal decision. Its

description is relegated to Appendix B.1, along with an analysis of its computational complexity.

Specifically, we construct a class of bilevel MILPs for which weak local search converges in

an exponential number of improving steps. The considered weak local search is based on a naive

heuristic that takes a linear 0-1 program as an input, solves its LP relaxation, and returns a feasible

decision by rounding. Note that, in general, this procedure is not even guaranteed to return either

an optimal, or even a follower’s feasible decision.

Weak approximate local optimality. We introduce the approximate counterpart of weak

local optimality to address the exponential worst-case behavior outlined above. Formally, weak

approximate local optimality, or weak ε-local optimality is defined as follows:

Definition 4. Let ε ≥ 0, NX be a neighborhood function, and A be an algorithm that returns a

unique feasible solution yA(x) to the lower-level problem (1c). Then, a leader’s feasible decision

xε,A ∈ X is said to be weakly ε-local optimal with respect to NX and A if and only if:

a⊤xε,A + d⊤yA(xε,A) ≤ (1 + ε)
(
a⊤x+ d⊤yA(x)

)
for any x ∈ NX (x

ε,A). ■

A weak ε-local optimal solution is essentially weakly local optimal whenever ε = 0, or sim-

ply ε-locally optimal, whenever the lower-level problem is solved exactly. Interestingly, if a δ-

approximation algorithm is available for the follower’s problem, then there exists a relation between

weak (approximate) and approximate local optimality, which we discuss in Section 4.

11

3.3 Example: maximum weighted clique interdiction problem

Interdiction problems are among the most widely studied models in bilevel MILPs. They often

represent a zero-sum game between an attacker disrupting a system and a defender (Smith and Song

2020), but can also capture non-zero-sum interactions, such as a decision-maker seeking to hedge

against the worst-case outcome of its environment (e.g., natural disasters). Common applications

include cyber defense, infrastructure security, and disrupting illicit supply chains. Also, these prob-

lems constitute a large portion of the available computational benchmarks (Thürauf et al. 2024).

In particular, we consider the problem of reducing the influence of tightly connected groups (for

instance, to limit the spread of fake news in social medias) by strategically blocking key actors

in a network to weaken the most influential clusters. To proceed, we introduce the maximum

weighted clique interdiction problem, or shortly CIP, which involves an undirected weighted graph

G = (V,E), where V and E represent the sets of vertices and edges, respectively (Furini et al.

2019). The leader’s goal is to strategically interdict (i.e., block) certain vertices in G. Following

the leader’s interdictions, the follower’s task is to solve the maximum weighted clique problem in

the interdicted graph. Let wi denote the weight of vertex i ∈ V . Then, CIP is defined as follows:

[CIP] : z∗ := min
x,y∗(x)

∑
i∈V

wiy
∗(x)i (9a)

s.t. x ∈ X :=
{
x ∈ {0, 1}|V | :

∑
i∈V

xi ≤ h
}
, (9b)

y∗(x) ∈ argmax
y∈{0,1}|V |

{∑
i∈V

wiyi : yi + yj ≤ 1 ∀ (i, j) /∈ E , y ≤ 1− x
}
, (9c)

where x is the leader’s decision, i.e., i ∈ V is interdicted if and only if xi = 1; y is the follower’s

decision, where yi = 1 if and only if i belongs to a clique. Furthermore, if (i, j) /∈ E, then i and j

cannot be in the same clique; see (9c). Given a clique C ⊆ V , its weight is given by ω(C) :=
∑

i∈C wi.

180 2 79

371 4 70

510 6 10

7

10

8

10

990 10 20

1120 12 89

Figure 1: A weighted graph with the maximum weighted clique C = {1, 2, 3, 4}. The leader can interdict up to one
vertex, i.e., h = 1. Interdicting vertex 1, is locally optimal and leads to the maximum weighted clique C∗ = {2, 3, 4}.
Similarly, interdicting vertex 2, is a 1/220-local optimal solution with the maximum weighted clique Cε = {1, 3, 4}.
Using a greedy search procedure, interdicting vertex 9, is weakly local optimal, while interdicting vertex 12, is
weakly 1/129-local optimal. The estimated cliques are given by CA = {10, 11, 12} and Cε,A = {6, 9, 11}, respectively.

12

Exact follower. We fix h = 1 in (9b) and consider the 2-flip neighborhood function. The

maximum weighted clique in G without interdiction is given by C = {1, 2, 3, 4} with ω(C) = 300.

Thus, the interdiction decision x∗ of blocking vertex 1 is the leader’s optimal solution, and hence,

also locally optimal. The resulting maximum clique is C∗ = {2, 3, 4} with ω(C∗) = 220.

On the other hand, if the leader’s feasible decision xε consists of interdicting vertex 2, then

the maximum clique becomes Cε = {1, 3, 4} with ω(Cε) = 221. Hence, xε is not a local optimal

solution since x∗ is an improving solution (unique) in its neighborhood. We have that ω(Cε)−ω(C∗)
ω(C∗) =

221−220
220 = 1

220 , which, together with Definition 2, implies that xε is ε-local optimal for ε = 1
220 .

Inexact follower. Next, we assume that the follower’s response is obtained using a greedy

heuristicA (see a pseudo-code in Appendix B.3). Starting with an empty clique, A iteratively selects

and adds a vertex with the maximum degree to C such that it remains a clique. If multiple vertices

have the same degree, then the vertex with the highest weight is chosen, with ties broken arbitrarily.

Denote by C̃ = {9, 10, 11, 12} the clique obtained by using A on G, with ω(C̃) = 219. Then,

let xA denote the leader’s feasible decision that consists of interdicting vertex 9. Hence, xA is weakly

local optimal (recall Definition 3), and CA = {10, 11, 12}, where ω(CA) = 129. Similarly, let xε,A

denote the leader’s feasible decision that consists of interdicting vertex 12. Then, Cε,A = {9, 10, 11}

with ω(Cε,A) = 130. According to Definition 4, xε,A is weakly ε-local optimal, where ε = 1
129 .

4 Relationships between weak and approximate local optimality

Next, we explore links between weak (approximate) and approximate local optimality whenever

the follower’s problem is solved approximately. Understanding these relationships is crucial, as they

allow us to quantify the error introduced from the leader’s perspective whenever the lower-level

problem is not solved exactly. In this section, we first address a special case, where there is a symme-

try between the leader’s and follower’s objective functions. Afterwards, we establish a more general

result that does not impose any assumptions on the parameters of the leader’s objective function.

Symmetry between upper and lower levels. Vectors c and d in the leader’s and follower’s

objective functions, respectively, are assumed to only differ by a scaling factor, i.e., d = αc for

some α > 0. Under this assumption, we assert that any weak (approximate) local optimal solution

with respect to a δ-approximation algorithm is also approximate locally optimal. Importantly,

this assertion does not rely on any assumption regarding vector a in the leader’s objective function.

Vectors c and d satisfying d = αc typically arise in “symmetric” interdiction problems (Smith et al.

2013). If a = 0 and α = 1, then the leader and the follower essentially engage in a zero-sum game.

13

Proposition 1. Let ε ≥ 0, NX be a neighborhood function, and A be a δ-approximation algorithm

for the lower-level problem (1c). Also, assume that d = αc for some α > 0. If xε,A is weakly ε-local

optimal with respect to NX and A, then xε,A is
(
δ+ε
1−δ

)
-locally optimal with respect to NX .

Note that Proposition 1 remains valid for ε = 0. Thus, under the assumptions of Proposition 1,

a natural relationship between weak and approximate local optimality is established. Specifically:

Corollary 1. Under the same assumptions as in Proposition 1, any weak local optimal solution

with respect to NX and A is
(

δ
1−δ

)
-locally optimal with respect to NX .

No assumptions on the upper and lower levels. We apply classical proximity theory

for the MILP value function (Blair and Jeroslow 1977; Mangasarian and Shiau 1987) and extend

Proposition 1 to a more general setting, where we do not impose any assumption on the symmetry

between c and d. Given ε ≥ 0, and r ≥ 0, define:

Π (ε, r, z) := ε+
(2 + ε) rdmax

z
, (10)

where z > 0 is some lower bound for [BP] and dmax := maxi {di} is the maximum element of

vector d. Similarly, let dmin := mini {di}. If the follower’s decision variables are all binary, then

one can select the lower bound z = min {amin, dmin} since z∗ > 0 by Assumption A4. Alternatively,

if the leader’s optimal decision is known to be non-zero, i.e., x ̸= 0, then z = amin can be chosen

accordingly. A more sophisticated lower bound can be obtained by, first, relaxing the optimality

criteria in [BP], and then solving the LP relaxation of the resulting single-level problem.

Next, we demonstrate that, given z > 0, a weak ε-local optimal solution with respect to an

algorithm A—which is assumed to always return a δ-approximation to the lower-level problem—is

actually Π (ε, γ1δ + γ2, z)-locally optimal for some γ1, γ2 ≥ 0. Formally:

Theorem 1. Let ε ≥ 0, δ ∈ Q ∩ [0, 1), NX be a neighborhood function, A be a δ-approximation

algorithm for the lower-level problem (1c), and z > 0 be a lower bound for the leader’s optimal

objective function value. If xε,A is weakly ε-local optimal with respect to NX and A, then there exist

γ1 ≥ 0 and γ2 ≥ 0 such that xε,A is Π(ε, γ1δ + γ2, z)-locally optimal with respect to NX . Also, if

the follower’s decision variables are either all continuous or all binary, then γ2 = 0.

If the follower’s problem contains only binary variables and admits an approximation scheme

with a controllable performance guarantee δ, then Theorem 1 implies that the approximation guar-

antee Π can be entirely controlled using ε and δ. In particular, in this case, Π is defined such that

lim(ε,δ)→(0,0)Π(ε, γ1δ + γ2, z) = 0. Finally, the proofs for this section can be found in Appendix C.

14

Empirical analysis. At first glance, the bound established in Theorem 1 may seem rather

loose, particularly in worst-case scenarios. Accordingly, we examine the convergence behavior and

empirically evaluate the maximum gap for the maximum clique interdiction problem discussed in

Section 3.3. For a leader’s feasible decision x ∈ X , the empirical maximum gap is defined as follows:

max
x̃∈NX (x)

(
a⊤x+ d⊤y∗(x)− a⊤x̃− d⊤y∗(x̃)

a⊤x̃+ d⊤y∗(x̃)

)+

,

Specifically, our analysis focuses on the asymmetric setting, which yields the weakest theoretical

guarantees. We report the empirical maximum gap attained by Π (ε, γ1δ, z)-local optimal solutions

across various values of δ and ϵ in Figure 2. Further details on the construction of the instances

and computational setup are provided in the Appendix C.3.

00.10.20.30.40.5

0
0.1

0.2
0.3

0.4
0.50

0.2
0.4

δ
ϵ

M
ax

im
u
m

ga
p

0

0.2

0.4

Maximum gap

Figure 2: Surface plot of the empirical maximum gap of a leader’s decision xε,A, which is weakly ε-local optimal
with respect to the 2-flip neighborhood function and a δ-approximation algorithm. The plot shows the gap as a
function of δ and ε for an instance of the asymmetric interdiction clique problem. Details on the construction of the
instances and the figure are provided in Appendix C.3.

Consistent with Theorem 1, we observe that as both δ and ε approach zero, the empirical gap

converges to zero. Notably, for this instance, and again as anticipated by Theorem 1, the parame-

ter δ exerts a more significant influence than ε on the magnitude of the empirical gap. Conversely,

for larger values of δ, the empirical gap can become arbitrarily large, as there may still exist leader’s

feasible decisions within the neighborhood of x that reduce the leader’s objective by 40%.

Remark 1. We note that a similar finding have been briefly discussed by Weninger and Fukasawa

(2025) in the more restrictive context of bilevel knapsack (symmetric) interdiction problems. They

highlight that solving the follower’s problem approximately may offer a promising direction for

addressing bilevel programs, an idea also supported by our study. ■

15

5 Finding a weak approximate local optimal solution

In Section 5.1, we introduce the weak approximate local search, also referred to as (ε,A)-LSA.

Then, in Section 5.2, we explore the worst-case performance guarantees of (ε,A)-LSA, both for its

running-time performance and the quality of the obtained solutions, under the assumption that

the follower’s decision variables are all binary. Finally, in Section 5.3, we extend these results to

capture bilevel problems for which the follower’s decision variables are mixed-integer. Most of the

discussion for the latter case is relegated to Appendix D to streamline our discussion.

5.1 Weak approximate local search

A key step in (ε,A)-LSA consists of selecting, possibly strategically, an improving solution in the

neighborhood of a given leader’s feasible decision. This phase is known as a neighborhood search.

Naturally, we can extend this procedure to improving solutions in terms of the leader’s objective

function evaluated with an inexact follower; recall our discussion in Section 3.2.

Neighborhood search. The neighborhood of a leader’s feasible decision might be very large,

making it challenging to effectively find an improving solution. Various strategies exist for the neigh-

borhood search in the single-level optimization context, which typically depend on the considered

neighborhood function, or the structure of the underlying problem (Altner et al. 2013). Also, mul-

tiple improving solutions may exist within the neighborhood, necessitating some tie-breaking rules.

Algorithm 1 - Improve - oracle for the neighborhood search

1: function Improve(xk, NX , a, d, A, γ)
2: if ∃ xk+1 ∈ NX (x

k) such that ∆A (xk,xk+1
)
> γ then

3: “answer” ← “Yes”

4: else

5: “answer” ← “No”

6: xk+1 ← xk

7: Return “answer”, xk+1

Importantly, in our discussion, we do not impose any restrictions on the specific approach

used for the neighborhood search. Hence, we introduce an oracle Improve, which is described in

Algorithm 1. Specifically, given a leader’s feasible decision xk ∈ X and γ ≥ 0, Improve answers

the following question: is there an improving solution in the neighborhood of xk that decreases the

leader’s objective function value with an inexact follower (i.e., obtained by calling A) by at least γ?

16

Algorithm 2 - (ε,A)-LSA - weak approximate local search

1: function (ε,A)-LSA(x0, NX , a, d, A, ε)

2: i← 0, xi ← x0, scaling ← True

3: while scaling do

4: Obtain yA(xi) by calling A // Inexact follower

5: K ← a⊤xi + d⊤yA(xi)

6: qa ← Kε
4n(1+ε) , qd ←

Kε
4(m+1)U(1+ε)

7: a′j ← qa

⌈
aj
qa

⌉
for j ∈ [n], d′ℓ ← qd

⌈
dℓ
qd

⌉
for ℓ ∈ [m] // Scaling

8: γ ← U
(
m+ q−1

d

∑m
ℓ=1 dℓ

)−1∑m
ℓ=1 d

′
ℓ if m2 > 0 else γ ← 0 // Improvement gap

9: k ← 0, xi,k ← xi

10: while scaling and
(
a⊤xi,k + d⊤yA(xi,k) > K

2

)
do

11: (“answer”,xk+1)← Improve(xk, NX ,a
′,d′,A, γ) // Neighborhood search

12: if “answer” is “Yes” then

13: yA(xi,k+1) by calling A // Inexact follower

14: xi,k ← xi,k+1, k ← k + 1

15: else

16: xε,A ← xi,k, scaling ← False

17: xi ← xi,k, i← i+ 1

18: Return xε,A

Weak approximate local search. In the context of single-level linear 0-1 programming,

scaling the entries of the vector in the objective function is a commonly used technique, which

plays an important role in various fully polynomial-time approximation schemes (FPTAS); see,

e.g., Lawler (1977). Loosely speaking, scaling is employed to reduce the number of distinct values

of the objective function’s vector by grouping components that are “sufficiently close” to each other.

Using scaling as a preprocessing step can accelerate the convergence of optimization algorithms,

but might also diminish the quality of the obtained solutions. To mitigate this issue, a carefully

chosen scaling factor is essential to balance the trade-off between efficiency and performance.

The idea of scaling the objective function in local search for single-level combinatorial opti-

mization is explored by Orlin et al. (2004), where the concept of ε-local search is introduced. Our

algorithm is motivated by their approach, but differs in two key ways. First, we need to account for

the lower-level problem, which requires estimating the follower’s response and, therefore, necessi-

17

tates somewhat different scaling rules as well as more involved proofs. Second, the follower’s decision

variables may be continuous, adding another difficulty compared to Orlin et al. (2004), which only

considers the pure 0-1 case. We address this additional issue by introducing a minimum improving

gap γ > 0, ensuring that any improving solution reduces the leader’s objective function by at least γ.

Algorithm 2 begins with an initial leader’s feasible decision x0 and computes the corresponding

inexact follower’s response (by calling A), together with the leader’s objective function value.

Subsequently, the cost vectors a and d from the leader’s objective are scaled; see line 7. The

scaling factors depend (adaptively) on the leader’s objective function value computed before.

Then, a weak local search is performed as a subroutine using these adjusted vectors within the

while loop at line 10. This subroutine may terminate before finding a weak local optimal solution

with respect to a′ and d′. Indeed, if no such solution is found within a “reasonable” number of

iterations, as determined by the predefined stopping criteria in the loop at line 10, then a and d

need to undergo further scaling. Specifically, the loop stops whenever the leader’s objective func-

tion with inexact follower is reduced by more than half, and the entire procedure repeats. The

algorithm continues until it successfully identifies a weak local optimum with respect to a′ and d′.

A detailed example of (ε,A)-LSA, applied to the interdiction problem discussed in Section 3.3,

is provided in Appendix D.1. The example illustrate both exact and inexact follower’s responses.

5.2 Runtime and performance guarantees of (ε,A)-LSA

We assume that both Improve and A are given, with their runtime complexity denoted by CI

and CA, respectively. We examine the theoretical performance guarantees of (ε,A)-LSA, together

with the properties of the obtained solution. In particular, our results capture both the case in

which the follower’s problem is solved approximately, and the other, where it is solved exactly.

Throughout this section, the follower’s decision variables are assumed to be all binary. That is,

the follower’s feasible set is given by Yb(x) for any x ∈ X . Thus, the upper bound for the follower’s

decisions from Assumption A2 is naturally given by U = 1; also, γ = 0 by default in Algorithm 2.

The proofs from this section can be found in Appendix D.2. Next, we present the following results:

• We develop a lower bound for the minimum gap between a leader’s feasible decision and an

improving solution in its neighborhood; see Lemma 1. We use this result to establish the

runtime complexity of (ε,A)-LSA; see Theorem 2.

• By Theorem 2, (ε,A)-LSA terminates for any ε ≥ 0, with a leader’s feasible decision xε,A.

Then, we demonstrate that the obtained solution is weakly ε-local optimal; see Theorem 3.

18

• Finally, we propose two further results under additional assumptions. That is, we introduce a

sufficient condition for xε,A to be a weak local optimal solution (i.e., ε = 0); see Proposition 2.

Then, we present a class of problems (namely, a = 0 and d = α1 for some α > 0) for which

(ε,A)-LSA is guaranteed to return a weak local optimal solution; see Theorem 4.

Lemma 1. Let ε > 0, NX be a neighborhood function, and A be an algorithm that returns a feasible

solution to the follower’s problem (1c) for any leader’s feasible decision. Assume that qa, qd, K,

a′ and d′ are given as in Algorithm 2 at iteration i ∈ Z≥0. Then, there exists ∆ > 0 such that for

any xi,k ∈ X and any improving solution in its neighborhood xi,k+1 ∈ NX (x
i,k), we have that:

min
{
∆A(xi,k,xi,k+1,a′,d′) : xi,k ∈ X , xi,k+1 ∈ NX (x

i,k)
}
≥ ∆,

where ∆A is given by (8) and ∆ is a constant parameter defined as ∆ := εK
4(1+ε)(m+1)n .

We exploit Lemma 1 to derive the runtime complexity of (ε,A)-LSA. We demonstrate that, in

the worst case, (ε,A)-LSA requires a polynomial number of calls to Improve and A. Formally:

Theorem 2. Let ε > 0, A be an algorithm that returns a feasible solution to the follower’s prob-

lem (1c) for any leader’s feasible decision, and x0 ∈ X be an initial leader’s feasible decision with the

corresponding leader’s objective function value K0 := a⊤x0 + d⊤yA(x0) ≤ namax +mdmax. Then,

(ε,A)-LSA terminates and its runtime complexity is in the order of O
(
1
εnm log

(
K0

)
(CI + CA)

)
.

Next, we show that the resulting leader’s decision is weakly ε-local optimal.

Theorem 3. Let ε > 0, NX be a neighborhood function, and A be an algorithm that returns a

feasible solution to the follower’s problem (1c) for any leader’s feasible decision. Then, (ε,A)-LSA is

guaranteed to return a weak ε-local optimal solution of [B-BP] with respect to NX and A.

The theoretical maximum gap ε obtained by our approach is asymptotically sharp whenever

the follower’s problem is solved exactly. Specifically, in Appendix D.3, we construct an instance of

[B-BP], where the maximum gap between the solution obtained by (ε,A)-LSA and an improving

solution in its neighborhood is in the order of O(ε).

Approximate local optimality. If algorithm A provides an exact solution to the follower’s

problem, then Theorem 3 implies that (ε,A)-LSA returns an ε-local optimal solution. Furthermore,

if the lower-level problem (1c) possesses a special structure (e.g., unimodularity of F in Yb) and

Improve is a polynomial-time algorithm (i.e., the neighborhood can be searched efficiently), then

an ε-local optimal solution to [B-BP] can be found in polynomial time. Conversely, if A is δ-

approximation algorithm, then Theorem 1 can be leveraged to strengthen Theorem 3. That is:

19

Corollary 2. Let ε > 0, NX be a neighborhood function, A be a polynomial-time algorithm that

returns a δ-approximate solution to the lower-level problem (1c) for any leader’s feasible decision,

and z > 0 be a strictly positive lower bound for the leader’s objective function. If Improve is a

polynomial-time algorithm, then (ε,A)-LSA is a polynomial-time algorithm that finds a Π(ε, γ1δ, z)-

local optimal solution with respect to NX , for some γ1 ≥ 0 and where Π is given by (10).

Weak local optimality. Interestingly, a sufficient condition can be identified for which (ε,A)-

LSA is ensured to return a weak local optimal solution to [B-BP]. This condition serves as a

posteriori optimality certificate, as it depends on the values of qa and qd obtained during the

last iteration if , before the algorithm stops. Deriving this result requires a somewhat deeper

understanding of the scaling process within (ε,A)-LSA. For simplicity, we focus our discussion on

vector a in the leader’s objective function, though similar considerations apply to vector d.

Consider ε > 0, and let qa > 0 denote the scaling factor obtained before (ε,A)-LSA terminates.

We define the step-wise function f : R→ R as f(u) := qa

⌈
u
qa

⌉
, for u > 0. Clearly, if u is a multiple

of qa, then the scaling has no effect on u, i.e., u = kaqa for ka ∈ Z≥0 implies f(u) = u. If, in the last

iteration if in (ε,A)-LSA, each component of a and d is a multiple of qa and qd, respectively, then

(ε,A)-LSA finds a local optimal solution to [B-BP]. We generalize this observation for instances,

where the components of a and d are sufficiently close to a multiple of qa and qd, respectively.

For each j ∈ [n], there exist pj ∈ Z≥0 and αj ∈ [0, qa) such that aj = pjqa − αj . Similarly, for

each ℓ ∈ [m], there exist sℓ ∈ Z≥0 and βℓ ∈ [0, pd) such that dℓ = sℓqd − βℓ. Then, we define:

∆∗
x := max

x∈X , x̃∈NX (x)
∥x− x̃∥1 and ∆A

y := max
x∈X , x̃∈NX (x)

∥∥yA(x)− yA(x̃)
∥∥
1
,

which represent, respectively, the maximum distance between a leader’s feasible decision and an-

other one in its neighborhood, and the maximum difference between the follower’s responses corre-

sponding to two leader’s decisions, where one of them is in the neighborhood of the other. Observe

that the former is bounded by n, while the latter is bounded by m. Then:

Proposition 2. Let ε > 0, NX be a neighborhood function, A be an algorithm that returns a

feasible solution to the follower’s problem (1c) for any leader’s feasible decision. Assume that K,

qa and qd are the parameters obtained at the last iteration if in Algorithm 2 before it terminates.

Let xε,A be the solution obtained by (ε,A)-LSA. If the following condition holds:

∆∗
x

n∑
j=1

αj +∆A
y

m∑
ℓ=1

βℓ ≤
Kε

4 (m+ 1)n (1 + ε)
, (11)

then xε,A is weakly local optimal with respect to NX and A.

20

Thus, the condition in (11) offers a sufficient criterion for verifying (weak) local optimality a

posteriori. Furthermore, if the follower’s problem is solved exactly, then Proposition 2 ensures that

the solutions obtained by (ε,A)-LSA are locally optimal whenever they satisfy (11).

Next, we demonstrate the existence of a relatively broad class of problems for which our approach

returns a weak local optimal solution. We assume that a = 0 and d = α1 for some α > 0. This

setting typically arises in some interdiction problems; see, e.g., Furini et al. (2019). Formally:

Theorem 4. Let NX be a neighborhood function, and let A be an algorithm that returns a feasible

decision to the follower’s problem (1c) for any leader’s feasible decision. Let xε,A be the solution

obtained by (ε,A)-LSA. Furthermore, assume that a = 0, d = α1 for some α > 0. Then, xε,A is

weakly local optimal with respect to NX and A.

In particular, Theorem 4 also suggests that if, first, the neighborhood can be searched efficiently

and, second, A is both polynomial-time and exact, then (ε,A)-LSA is guaranteed to efficiently

return a local optimal solution. Finally, results similar to those developed in this section (including

Theorems 2 and 3) remain valid when we relax the integrality constraints for some of the follower’s

decision variables. Although the corresponding proofs require somewhat different approaches, the

obtained results closely mirror those presented in this section. Hence, we outline only some brief

details for the mixed-integer case in Section 5.3 bellow, and refer to Appendix D.4 for the complete

discussion. Some relevant extensions of (ε,A)-LSA are detailed in Appendix D.5.

5.3 Extension to mixed-integer and pure continuous follower

In this section, we highlight the worst-case runtime of (ε,A)-LSA when the lower level is an MILP.

Accordingly, we assume that m2 > 0, indicating that at least one of the follower’s decision variables

is continuous. Consequently, (ε,A)-LSA behaves differently, particularly in line 8 of Algorithm 2,

where γ is introduced as a minimum acceptable gap for any improving solution.

If the follower’s problem involves continuous variables, then the convergence of (ε,A)-LSA within

a polynomial number of improving steps may not be guaranteed through scaling alone. Indeed, there

may exist neighbors that only marginally improve the leader’s objective function by an infinites-

imally small amount. To address this issue, we introduce γ, an adaptively chosen threshold that

represents the minimum gap required for a neighbor to be considered as an improvement solution.

Proposition 3. Let ε > 0, A be an algorithm that returns a feasible solution to the follower’s

problem (1c) for any leader’s feasible decision, and x0 be an initial leader’s feasible decision with

21

associated leader’s objective function value K̃0 := a⊤x0 + d⊤yA(x0) ≤ namax + mUdmax. Then,

(ε,A)-LSA terminates and its runtime complexity is in the order of O
(
1
εm log

(
K̃0

)
(CI + CA)

)
.

Even when γ is nonzero, (ε,A)-LSA still returns a weak ε-local optimal solution, and so, in a

polynomial number of improving steps. Yet, the factor n disappears from the runtime complexity in

Proposition 3 (compared to Theorem 2). Note, however, that n appears implicitly through K̃0 and

CA in the runtime complexity. The intuition behind this somewhat surprising observation is that

γ ensures that no improving solutions leading to negligible improvements in the leader’s objective

function, particularly through the follower’s decision, are selected during the neighborhood search.

6 Computational study

In this section, we support our theoretical developments by exploring the empirical performance

of (ε,A)-LSA introduced in Section 5. We emphasize that, in the worst case, local optimal solutions

and their generalizations introduced in our study can be arbitrarily far from the leader’s optimal

decision. Accordingly, our experiments are not intended to demonstrate the superiority of our ap-

proach over exact methods, but rather to explore the trade-offs between efficiency and solution qual-

ity relative to naive local search. In particular, we are interested in the trade-offs that arise from the

choice of ε, and from solving the follower’s problem approximately. Our experimental setup along

with the metrics that evaluate the quality of the obtained solutions are discussed in Section 6.1.

We select problem instances with increasing lower-level computational complexity, focusing

on well-established classes for bilevel MILPs (Thürauf et al. 2024). Specifically, we consider two

distinct bilevel MILP classes, where the lower-level problems are known to be computationally

difficult. First, in Section 6.2, we consider the knapsack interdiction problem. That is, the follower’s

problem is a linear mixed 0-1 knapsack problem, which is NP-hard only in a weak sense as it admits a

FPTAS; see, e.g., Garey and Johnson (1979) and Bernhard and Vygen (2008). Then, in Section 6.3,

we examine the maximum weighted clique interdiction problem, where the follower’s problem is

known to be strongly NP-hard (Garey and Johnson 1979); recall our earlier example in Section 3.3.

Loosely speaking, despite the fact that the two considered follower’s problems are both NP-hard,

they represent, in a sense, two opposite ends of the complexity spectrum.

6.1 Preliminaries and performance measures

All procedures start with the leader’s feasible decision x0 = 0. In the experiments, only the

k-flip neighborhood as defined in (4), is considered, with k ∈ {2, 3}, where by default k = 2. Finally,

22

Improve iterates over the neighborhood and selects the first improving solution found. Also, we

assume that (ε,A)-LSA performs a weak local search whenever ε = 0 (we refer to Appendix B.1 for

the corresponding pseudo-code).

Efficiency. We evaluate all considered algorithms using three distinct measures. That is:

(i) Running time (Time): it measures the runtime in seconds; (ii) Number of improving steps

(ImpSteps): it corresponds to the number of times that Improve returns “Yes;” (iii) Number of

calls to A (CallA): it is defined as the number of times the follower’s problem is solved using A.

Performance. We use the following three distinct measures. Specifically:

(i) Improving ratio (ImpRatio): this metric measures the relative improvement in the leader’s

objective function (evaluted using the exact follower’s response) by comparing solutions obtained

by (ε,A)-LSA to those obtained by LSA. Formally, given xε,A and xL, the leader’s feasible decisions

returned by (ε,A)-LSA and LSA, respectively, ImpRatio is defined as:

ImpRatio =
a⊤xε,A + d⊤y∗(xε,A)−

(
a⊤x0 + d⊤y∗(x0)

)
a⊤xL + d⊤y∗(xL)− (a⊤x0 + d⊤y∗(x0))

,

where x0 is the initial feasible solution used as the starting point for the algorithms.

(ii) Percentage of better solutions (BetterSol): it represents the percentage of improving so-

lutions (in terms of the exact follower’s response) in the neighborhood of the solution xε,A obtained

by (ε,A)-LSA. Indeed, recall from Definition 2 that there may exist improving solutions in the neigh-

borhood of xε,A. By “percentage,” we refer to the ratio of improving solutions to the total number

of leader’s feasible decisions in the neighborhood. Specifically, we count all feasible decisions and

determine how many of them are improving ones. If BetterSol= 0%, then xε,A is locally optimal.

(iii) Maximum gap (MaxGap): it measures the largest empirical difference in terms of the

leader’s objective function values between the solution obtained by one of our algorithms and any

improving solution in its neighborhood, considering the exact follower’s response. Formally, given

xε,A, the leader’s feasible decision obtained by calling (ε,A)-LSA, MaxGap is computed as follows:

MaxGap := max
x̃∈NX (xε,A)

(
a⊤xε,A + d⊤y∗(xε,A)− a⊤x̃− d⊤y∗(x̃)

a⊤x̃+ d⊤y∗(x̃)

)+

,

where (a)+ = max {a, 0} for any a ∈ R. If A always returns the exact follower’s response, then

xε,A is ε-local optimal, and therefore, MaxGap ≤ ε. A similar theoretical bound exists whenever

the lower-level problem is solved approximately; recall our discussion in Section 4.

Hardware and software. Our algorithms are implemented in Python 3.10. The experiments

23

are conducted in parallel on a cluster equipped with 32 Intel(R) Xeon(R) Gold 6126 CPUs (1 core

each), operating at 2.60GHz, running Ubuntu 22.04.3. The MILP solver is Gurobi 11.0.0 (with

setting “Threads = 1”).

6.2 Knapsack interdiction problem (KIP)

Given a set of items, the leader’s goal is to strategically interdict some of the items that can be

picked by the follower. The leader has an interdiction budget; in addition, the leader is penalized

with some cost for each interdiction action. In return, the follower solves a linear mixed 0-1 knapsack

problem with the remaining non-interdicted items. Formally:

[KIP] : min
x,y∗(x)

a⊤x+ c⊤y∗(x)

s.t. x ∈ X :=
{
x ∈ {0, 1}n : 1⊤x ≤ 0.3n

}
,

y∗(x) ∈ argmax
{
c⊤y : y ∈ {0, 1}n1 × [0, 1]n2 , Fy ≤ f , y ≤ 1− x

}
,

where n := n1 + n2. In our experiments, the cost vectors are generated using a uniform distribu-

tion U . That is, a′ ∼ U({1000, . . . , 1100}n), a = 0.01 × a′, and c ∼ U({1000, . . . , 1100}n). The

constraints are generated in a similar manner with F ∼ U({1000, . . . , 1100}q×n) and f = 0.4F1.

Additionally, the leader can interdict up to 30% of the follower’s items. In the experiments bellow,

given some parameters n1, n2 and q, we always generate 200 instances of [KIP], and report the

average (Avg) and the mean absolute value (MAD) over these instances.

The discussion bellow is divided into three parts based on whether the follower’s decision vari-

ables are all continuous (n1 = 0), all binary (n2 = 0), or mixed-integer (n1n2 > 0). The three

corresponding classes of the follower’s problems are distinguished by their complexity: the first one

is polynomial-time solvable as it is simply a linear program, while the latter two are NP-hard.

6.2.1 Pure continuous lower level (i.e., Y = Yc)

Next, the follower’s decision variables are assumed to be all continuous, i.e., n1 = 0, and n = n2,

where n ∈ {10, 30, . . . , 150}. Moreover, the lower-level problem contains a single constraint, i.e.,

q = 1. Hence, it is a standard continuous knapsack problem, which is solvable by the greedy

algorithm (Dantzig 1957). We let ε ∈ {0, 0.1, 0.2, 0.25}, where ε = 0 corresponds to LSA.

The primary interest with the purely continuous case is to isolate the impact of the scaling tech-

nique when the follower’s problem can be solved efficiently. Figure 3 includes Time and ImpSteps,

and offers only a snapshot of our broader analysis, which also coversCallA, BetterSol,MaxGap,

24

0 40 80 120 160

0

5

10

15

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1 ε = 0.2 ε = 0.25

(a) k = 2: runtime

0 40 80 120 160

0
20
40
60
80

100
120

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1 ε = 0.2 ε = 0.25

(b) k = 2: number of improving steps

0 40 80 120 160

0

200

400

600

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1 ε = 0.2 ε = 0.25

(c) k = 3: runtime

0 40 80 120 160

0
20
40
60
80

100
120

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1 ε = 0.2 ε = 0.25

(d) k = 3: number of improving steps

Figure 3: Continuous follower - exact follower (δ = 0) - 2- and 3-flip neighborhoods (k ∈ {2, 3}): comparison of
the runtime and the number of improving steps for the knapsack interdiction problem; see Section 6.2.1. Recall that ε = 0
corresponds to LSA, while ε > 0 corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating
Avg ± MAD. Figures 3a and 3b as well as Figure 3c and 3d correspond to the 2- and 3-flip neighborhood, respectively.

and ImpRatio for both the 2-and 3-flip neighborhoods. The complete set of figures is available in

Appendix E.1. We then make the following observations:

• First, scaling the vectors in the leader’s objective does improve the running time; see

Figure 3a. Specifically, the improvement is more pronounced for larger values of ε, which is intu-

itive. Note that the running time does not explode for large values of n, which is consistent with

Proposition 3. Indeed, the lower-level problem is a linear program and the leader’s neighborhood

can be efficiently searched. Therefore, (ε,A)-LSA is guaranteed to be a polynomial-time algorithm.

• The number of improving steps grows more or less linearly in n, even for local search; see Fig-

ure 3b. Nevertheless, as ε increases, the slope becomes less steep, which aligns with the theoretical

worst-case performance of (ε,A)-LSA, which is of the order O
(
n
ε

)
; see Lemma 4 in Appendix D.4.

• The above observations remain valid for the 3-flip neighborhood. However, the impact of

scaling on the runtime is even more pronounced as the 3-flip neighborhood has a larger cardinal-

ity (order of O(n3)) than the 2-flip neighborhood (order of O(n2)); compare Figures 3a and 3c. On

the other hand, as observed in Figures 3b and 3d, the number of improving steps for the leader

remains stable even for a larger neighborhood, which is consistent with Proposition 3.

25

10 15 20 25 30 35

0

2

4

×103

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1

(a) Runtime

10 15 20 25 30 35

5

10

15

20

25

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1

(b) Number of improving steps

10 15 20 25 30 35
0

5

10

15

×102

n

C
a
l
l
A

ε = 0 ε = 0.1

(c) Number of calls to A

10 15 20 25 30 35

0

2

4

n

B
e
t
t
e
r
S
o
l
(%

)

ε = 0.1

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

10 15 20 25 30 35

0

0.5

1

×10−3

n

M
a
x
G
a
p

ε = 0.1

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

10 15 20 25 30 35

0.8

1

1.2

1.4

1.6

n

Im
p
R
a
t
io

ε = 0.1

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 4: Binary follower - exact follower (δ = 0) - 2-flip neighborhood (k = 2): comparison of the efficiency and
the performance for the knapsack interdiction problem; see Section 6.2.2. Recall that ε = 0 corresponds to LSA, while ε > 0
corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating Avg ± MAD.

6.2.2 Pure binary lower level (i.e., Y = Yb)

We assume that the follower’s decision variables are all binary, i.e., n2 = 0, and n = n1, such

that n ∈ {10, 15, . . . , 35}. The lower-level problem, a 0-1 knapsack problem with one constraint (i.e.,

q = 1), is solved either exactly using a pseudo-polynomial time algorithm, or approximately with a

classical FPTAS, where its performance guarantee is controlled by δ (Bernhard and Vygen 2008).

We consider four pairs of parameter (δ, ε) ∈ {(0, 0), (0.1, 0), (0, 0.1), (0.1, 0.1)}. Recall that

(δ, ε) = (0, 0) corresponds to standard local search. Pair (δ, ε) = (0.1, 0.1) refers to (ε,A)-LSA,

where both the scaling technique is used and the follower’s problem is solved approximately. Pair

(δ, ε) = (0, 0.1) represents (ε,A)-LSA, where only scaling is employed, while the follower’s problem

is solved exactly. Finally, (δ, ε) = (0.1, 0) corresponds to the weak local search, where there is no

scaling, but the follower’s problem is solved approximately. We point out the following observations:

• If the follower’s problem is solved exactly, then the isolated effect of scaling can be found

26

10 15 20 25 30 35

0

20

40

×102

n

T
im

e
(s
ec
)

(δ, ε) = (0, 0)

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)

(a) Runtime

10 15 20 25 30 35

5

10

15

20

25

n

Im
p
S
t
e
p
s

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)
transparent

(b) Number of improving steps

10 15 20 25 30 35
0

0.5

1

1.5

×103

n

C
a
l
l
A

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)
transparent

(c) Number of calls to A

10 15 20 25 30 35

0

2

4

n

B
e
t
t
e
r
S
o
l
(%

)

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

10 15 20 25 30 35

0

0.5

1

×10−3

n

M
a
x
G
a
p

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

10 15 20 25 30 35
0.6

0.8

1

1.2

1.4

1.6

n

Im
p
R
a
t
io

(δ, ε) = (0.1, 0.1)

(δ, ε) = (0.1, 0)

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 5: Binary follower - inexact follower (δ = 0.1) - 2-flip neighborhood (k = 2): comparison of the efficiency
and the performance for the knapsack interdiction problem; see Section 6.2.2. Recall that ε = δ = 0 corresponds to LSA, while
ε > 0 corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating Avg ± MAD.

in Figure 4. The results on both the running time (Figure 4a), and the number of improving

steps (Figure 4b) are consistent with the ones from Section 6.2.1. Naturally, these observations

extend to the number of calls to A, which is also reduced after scaling; see Figure 4c.

• Recall that the leader’s decision obtained by (ε,A)-LSA is not guaranteed to be locally optimal.

We observe this phenomena in Figure 4d, as there are still on average, around 2% of improving

solutions in the neighborhood of the obtained solution. Recall that the maximum theoretical gap

of the solutions returned by (ε,A)-LSA is given by ε+δ
1−δ = ε for δ = 0; see Proposition 1. The

empirical maximum gap, see Figure 4e, is much lower than the theoretical one given by

ε = 0.1. Furthermore, the improvement ratio is 1 ± 0.1; see Figure 4f. That is, the solutions

obtained by (ε,A)-LSA are of comparable quality to the ones obtained by LSA.

• If we simply solve the lower-level problem approximately, but with no scaling, i.e.,

27

(δ, ε) = (0.1, 0), then we see a significant reduction in the runtime compared to LSA; see

Figure 5a. Moreover, the runtime is better for (ε,A)-LSA when δ = 0.1 and ε = 0.1 compared to

when δ = 0.1 and ε = 0. In fact, whenever the approximation algorithm for the lower-level problem

is efficient, we systematically observe this behaviour, which is consistent with Theorem 2.

• When the follower’s problem is solved exactly, scaling reduces both the number of improving

steps and the number of calls to A; recall Figures 4b and 4c. Similarly, it is also the case even

when the follower’s problem is not solved exactly, but approximately; compare Figures 5b and 5c.

• The significant improvement in the runtime achieved by solving the lower-level problem ap-

proximately is accompanied by only a subtle deterioration in the solution quality, as illustrated in

Figures 5d, 5e and 5f. In fact, here, scaling has a larger negative effect on the solution quality.

The concluding remark from the experiments in Sections 6.2.1 and 6.2.2 is that both scaling

the leader’s objective function and solving the lower level approximately improve the runtime.

Nonetheless, solving the follower’s problem approximately has a more pronounced impact on the

runtime for this class of problems; recall Y = Yb. Importantly, both techniques still produce similar

quality solutions compared to the standard local search algorithm.

6.2.3 Mixed-integer lower level

Next, we assume that the follower’s decision variables can be both binary and continuous. That

is, we set n1 = 0.8n, n2 = 0.2n, where n ∈ {10, 15, . . . , 35}, and q = 10. The mixed-integer

knapsack problem is solved using Gurobi, with the MILP optimality gap set to δ ∈ [0, 1). We

explore pairs of parameters ε ∈ {0, 0.1} and δ ∈ {0, 0.005}. From our experiments, we observe that:

• As shown in Figure 6a, the runtime of LSA explodes, averaging over an hour for a single

instance. This behaviour can be explained by the computational difficulty of solving the follower’s

problem. In contrast, scaling drastically reduces the runtime. The observed improvement is

consistent with the one in the number of improving steps (Figure 6b) and in the number of calls

to A (Figure 6c), and aligns with the previous results in Sections 6.2.1 and 6.2.2.

• The percentage of improving solutions is relatively stable around 2-3%; see Figure 6d. The

maximum gap, in Figure 6e, is much smaller than the theoretical one given by ε+δ
1−δ = ε for δ = 0;

recall Proposition 1. The improvement ratio, between 0.6 and 1, is lower compared to the ones

from Section 6.2.1 and Section 6.2.2; see Figure 6f. This quality deterioration is intuitive since, as

often with approximate algorithms, there is a trade-off between the solution quality and runtime.

• Recall from Section 6.2.2 that the reduction in the runtime is mostly driven by solving the

28

10 15 20 25 30 35

0

5

10

×103

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1

(a) Runtime

10 15 20 25 30 35
0

10

20

30

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1

(b) Number of improving steps

10 15 20 25 30 35
0

5

10

15

×102

n

C
a
l
l
A

ε = 0 ε = 0.1

(c) Number of calls to A

10 15 20 25 30 35

0

2

4

6

n

B
e
t
t
e
r
S
o
l
(%

)

ε = 0.1

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

10 15 20 25 30 35

0

1

2

3

×10−3

n

M
a
x
G
a
p

ε = 0.1

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

10 15 20 25 30 35

0.2

0.4

0.6

0.8

1

1.2

n

Im
p
R
a
t
io

ε = 0.1

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 6: Mixed-integer follower - exact follower (δ = 0) - 2-flip neighborhood (k = 2): comparison of the efficiency
and the performance for the knapsack interdiction problem; see Section 6.2.3. Recall that ε = 0 corresponds to LSA, while ε > 0
corresponds to (ε,A)-LSA. Each line shows the average (Avg) of the metric, with the shaded region indicating Avg ± MAD.

follower’s problem approximately. In contrast, in Figure 7a with (δ, ε) = (0.005, 0), the runtime

also explodes when scaling is not applied, but the lower level is solved approximately.

On the other hand, scaling has an effect on the number of improving steps (Figure 7b) and the

number of calls toA (Figure 7c), which is consistent with the obervations from the previous sections.

• The percentage of improving solutions (Figure 7d) and the maximum gap (Figure 7e) are also

consistent with our previous results. However, for the improving ratio, we observe that it can be

down to 0.5; see Figure 7f. This lower ratio is not surprising given the significant reduction in the

runtime. Our interpretation is that it serves as a reminder that there is “no free lunch.” That is, the

decrease in runtime inevitably comes at the cost of a decrease in the solution quality performance.

• It is worth mentioning that the running time results in Figure 6a and Figure 7a exhibit more

noisy behaviour compared to those in Section 6.2.1 or Section 6.2.2. This somehow higher noise

level is likely due to solving small MILP instances with Gurobi, which finds an approximate solution

in less than a second, resulting in larger differences than when solving larger instances.

29

10 15 20 25 30 35
−10

0

10

20

30
×102

n

T
im

e
(s
ec
)

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(a) Runtime

10 15 20 25 30 35
0

10

20

30

n

Im
p
S
t
e
p
s

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(b) Number of improving steps

10 15 20 25 30 35
0

5

10

×102

n

C
a
l
l
A

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(c) Number of calls to A

10 15 20 25 30 35

0

5

10

n

B
e
t
t
e
r
S
o
l
(%

)

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

10 15 20 25 30 35

0

1

2

3

×10−3

n

M
a
x
G
a
p

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

10 15 20 25 30 35
0

0.5

1

1.5

n

Im
p
R
a
t
io

(δ, ε) = (0.005, 0.1)

(δ, ε) = (0.005, 0)

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 7: Mixed-integer follower - inexact follower (δ = 0.005) - 2-flip neighborhood (k = 2): comparison of the
efficiency and the performance for the knapsack interdiction problem; see Section 6.2.3. Recall that ε = δ = 0 corresponds to
LSA, while ε > 0 corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating Avg ± MAD.

We conclude from Figures 6 and 7 that either applying, in isolation, scaling or solving the lower

level approximately reduces the runtime. However, the latter does not have as much impact as it

does in Section 6.2.2. Instead, scaling is the primary driver of the runtime improvement.

6.3 Maximum weighted clique interdiction problem

The last set of experiments is on the maximum weighted clique interdiction problem; recall (9) in

Section 3.3. We use randomly generated graphs G with n vertices and edge density d. Specifically,

we generate 50 instances of Erdős-Rényi graphs (Erdos, Rényi, et al. 1960), where n ∈ {40, 50, 60}

and d ∈ {0.5, 0.7, 0.9}. The weight of i ∈ V is wi = 10w̃i + 1000, where w̃i ∼ U ({1, . . . , deg(i)})

and deg(i) denotes the degree of vertex i ∈ V . The leader’s interdiction budget is set to h = 0.1n.

Table 2 contains the results for standard local search, i.e., ε = δ = 0. Similarly, the results for

(ε,A)-LSA can be found in Table 3, where both scaling (ε = 0.1) and solving the follower’s problem

30

approximately (δ = 0.1) are applied. The isolated effects of either scaling, i.e., (δ, ε) = (0, 0.1), or

solving the follower’s problem approximately, i.e., (δ, ε) = (0.1, 0), are relegated to Appendix E.2.

Time (sec) ImpSteps CallA

n d Avg MAD Avg MAD Avg MAD

40 0.5 31.5 7.6 7.6 1.7 368 90

40 0.7 26.4 7.0 9.8 2.1 421 103

40 0.9 7.7 2.2 12.0 2.3 470 117

50 0.5 100.2 28.4 9.6 1.9 666 181

50 0.7 84.8 21.4 12.6 2.4 740 191

50 0.9 23.3 6.6 14.9 2.7 794 232

60 0.5 195.6 51.3 11.1 2.3 927 249

60 0.7 178.8 43.7 13.5 2.5 970 243

60 0.9 76.4 23.1 18.6 3.3 1,260 348

Table 2: Standard LSA - 2-flip neighborhood (k = 2): comparison of the efficiency and performance metric
for LSA, where (δ, ε) = (0, 0), applied to the maximum weighted clique interdiction problem; recall (9) in Section 6.3.
Moreover, the leader interdicts 10% of the vertices, i.e., h = 0.1n.

Time (sec) ImpSteps CallA MaxGap ImpRatio

n d Avg MAD Avg MAD Avg MAD Avg MAD Avg MAD

40 0.5 23.6 7.5 7.1 1.8 341 103 8.1 · 10−3 9.6 · 10−3 0.89 1.8 · 10−1

40 0.7 16.5 7.2 9.2 2.5 394 139 2.2 · 10−2 2.0 · 10−2 0.83 1.6 · 10−1

40 0.9 5.9 1.2 10.8 2.2 404 83 2.2 · 10−2 1.5 · 10−2 0.89 8.3 · 10−2

50 0.5 90.4 31.2 9.2 2.3 627 207 8.4 · 10−3 1.1 · 10−2 0.94 1.0 · 10−1

50 0.7 65.4 23.6 11.8 2.6 659 207 7.6 · 10−3 8.8 · 10−3 0.91 1.3 · 10−1

50 0.9 15.0 4.0 14.4 2.9 765 203 2.4 · 10−2 1.3 · 10−2 0.88 9.2 · 10−2

60 0.5 152.8 40.5 9.7 2.1 742 205 9.3 · 10−3 8.7 · 10−3 0.89 1.7 · 10−1

60 0.7 168.9 47.9 13.3 2.2 948 264 1.5 · 10−2 1.6 · 10−2 0.91 9.2 · 10−2

60 0.9 32.5 10.3 18.7 4.1 1,080 314 2.6 · 10−2 1.3 · 10−2 0.84 7.7 · 10−2

Table 3: (ε,A)-LSA - inexact follower (δ = 0.1) - 2-flip neighborhood (k = 2): comparison of the efficiency
and performance metric for (ε,A)-LSA, where (δ, ε) = (0.1, 0.1), applied to the maximum weighted clique interdiction
problem; recall (9) in Section 6.3. Moreover, the leader interdicts 10% of the vertices, i.e., h = 0.1n.

Comparing Tables 2 and 3, we observe a decrease in the runtime across all instances when

using (ε,A)-LSA, instead of LSA. However, this decrease is not as pronounced as in Section 6.2.

We believe that this observation can be attributed to the increased computational difficulty of

the lower-level problem, which is strongly NP-hard and not approximable. Furthermore, both the

number of improving steps and the number of calls to A are reduced, although the decrease is also

less significant compared to Section 6.2. The maximum empirical gap remains stable and much

smaller than the theoretical one in Proposition 1. Finally, the improvement ratio is relatively stable

around 0.9±0.1. Thus, the solutions from (ε,A)-LSA are of comparable quality to those from LSA.

31

6.4 Summary insights

We believe that the disparity in efficiency gains achieved by (ε,A)-LSA when applied to the

knapsack interdiction and the maximum weighted clique interdiction problems can be attributed

to the different computational complexity of their respective lower-level problems. Although the

knapsack problem is NP-hard (Garey and Johnson 1979), it is only weakly so and admits an FPTAS.

In contrast, the maximum clique problem is strongly NP-hard, and hence, it does not admit an

FPTAS. In fact, unless P=NP, for any ε > 0, no polynomial-time algorithm can provide anO(n
1
2
−ε)-

approximate solution to the maximum clique problem (H̊astad 1999). Consequently, these two

problem classes occupy very different positions within the NP-hardness spectrum. One could argue

that most problems of interest in the bilevel optimization literature typically fall between these two

extremes, suggesting that the empirical efficiency of (ε,A)-LSA is likely to vary similarly, falling

somewhere between the results obtained for the two considered extremes.

The theoretical and empirical efficiency of (ε,A)-LSA relies on two key ideas: scaling the leader’s

objective function in an adaptive manner, and evaluating the leader’s objective function via an

inexact follower’s response. Specifically, the latter idea implies that we consider approximate so-

lutions to the lower-level problem rather than the follower’s fully rational response. Our approach

integrates these two ideas within a local search-based algorithm. We observe that applying inde-

pendently either scaling or an inexact follower’s response is generally insufficient; both techniques

are essential to ensure efficiency. Moreover, our computational study demonstrates that there is a

trade-off between the runtime gains achieved by using (ε,A)-LSA instead of LSA, and the quality of

the obtained solutions. By accepting a reasonably small decrease in the solution quality compared

to LSA, we can achieve (depending heavily on the difficulty of the lower-level problem) a significant

reduction in the runtime and in the number of improving steps required for the leader to converge.

To conclude this section, we acknowledge that our computational experiments are primarily

restricted to interdiction problems. For completeness, we have therefore also conducted experiments

on non-interdiction instances borrowed from the literature (Thürauf et al. 2024). The results of

these supplementary experiments are provided in Appendix E.3.

7 Conclusion and further research directions

In this study, we address two primary challenges encountered by local search in the context of

bilevel MILPs. First, we mitigate the worst-case exponential behavior typically associated with the

32

standard local search method by employing advanced scaling techniques and extending the concept

of ε-local optimality to the bilevel setting. Second, we tackle the difficulty of computing the fol-

lower’s optimal decision during the neighborhood search by estimating the follower’s response with

either an approximate or merely a feasible decision to the lower-level problem.

Our theoretical contributions are supported by numerical experiments. The results demonstrate

that both techniques, namely, scaling the leader’s objective function and solving approximately the

lower-level problem, improve the runtime while preserving a solution quality comparable to that

of standard local search. Notably, applying these techniques in isolation is generally insufficient;

instead, they must be applied in a unified manner. Moreover, we observe that the runtime im-

provements are significantly influenced by the complexity of the lower-level problem.

The development of solution methods for mixed-integer linear programs has historically ben-

efited from both cutting-plane techniques and heuristics, including local search methods. While

cutting-plane approaches have been successfully adapted to bilevel MILPs, local search has received

little attention. Local optimal solutions, though not necessarily globally optimal, remain valuable.

For practitioners, adopting relaxed solution concepts as proposed here provides guarantees

on solution quality with controllable runtime for otherwise intractable bilevel problems. For the

research community, alongside the traditional focus on improving lower bounds in exact methods,

exploring approaches that enhance feasibility bounds, similar to the one proposed in this study,

may offer a promising and underexplored direction for advancing the field. Integrating these ideas

within exact methods could significantly advance solution techniques for bilevel MILPs.

While our study focuses on follower’s problems with linear objective functions, many real-world

applications involve nonlinear lower-level objective functions, presenting further opportunities for

extension. Incorporating continuous upper-level variables and fully addressing coupling constraints

also remain important directions for future research. Finally, although our numerical experiments

suggest that lower-level computational complexity impacts the performance of our approach, further

empirical and theoretical analysis is needed to better understand this phenomena.

33

References

Aarts, E. and Lenstra, J. K. (2003). Local Search in Combinatorial Optimization. Princeton: Prince-

ton University Press.

Ahuja, R. K., Ergun, Ö., Orlin, J. B., and Punnen, A. P. (2002). “A survey of very large-scale

neighborhood search techniques”. In: Discrete Applied Mathematics 123.1-3, pp. 75–102.

Altner, D. S., Ahuja, R. K., Ergun, Ö., and Orlin, J. B. (2013). “Very large-scale neighborhood

search”. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques. Ed. by Burke Edmund K.and Kendall, G. Boston, MA: Springer US, pp. 339–367.

Arkin, E. M. and Hassin, R. (1998). “On local search for weighted k-set packing”. In: Mathematics

of Operations Research 23.3, pp. 640–648.

Arslan, O., Jabali, O., and Laporte, G. (2018). “Exact solution of the evasive flow capturing prob-

lem”. In: Operations Research 66.6, pp. 1625–1640.

Audet, C., Hansen, P., Jaumard, B., and Savard, G. (1997). “Links between linear bilevel and

mixed 0–1 programming problems”. In: Journal of Optimization Theory and Applications 93,

pp. 273–300.

Beck, Y., Ljubić, I., and Schmidt, M. (2023). “A survey on bilevel optimization under uncertainty”.

In: European Journal of Operational Research 311.2, pp. 401–426.

Ben-Ayed, O. and Blair, C. E. (1990). “Computational difficulties of bilevel linear programming”.

In: Operations Research 38.3, pp. 556–560.

Bernhard, K. and Vygen, J. (2008). Combinatorial optimization: Theory and algorithms. Springer.

Bertsimas, D., Iancu, D. A., and Katz, D. (2013). “A new local search algorithm for binary opti-

mization”. In: INFORMS Journal on Computing 25.2, pp. 208–221.

Bichler, M. and Waldherr, S. (2022). “Core pricing in combinatorial exchanges with financially con-

strained buyers: Computational hardness and algorithmic solutions”. In: Operations Research

70.1, pp. 241–264.

Blair, C. E. and Jeroslow, R. G. (1977). “The value function of a mixed integer program: I”. In:

Discrete Mathematics 19.2, pp. 121–138.

Bolusani, S. and Ralphs, T. K. (2022). “A framework for generalized Benders’ decomposition and

its application to multilevel optimization”. In: Mathematical Programming 196.1, pp. 389–426.

Brotcorne, L., Labbé, M., Marcotte, P., and Savard, G. (2001). “A bilevel model for toll optimization

on a multicommodity transportation network”. In: Transportation Science 35.4, pp. 345–358.

34

Caprara, A., Carvalho, M., Lodi, A., and Woeginger, G. J. (2016). “Bilevel knapsack with inter-

diction constraints”. In: INFORMS Journal on Computing 28.2, pp. 319–333.

Chandra, B., Karloff, H., and Tovey, C. (1999). “New results on the old k-opt algorithm for the

traveling salesman problem”. In: SIAM Journal on Computing 28.6, pp. 1998–2029.

Correa, J., Harks, T., Kreuzen, V. J., and Matuschke, J. (2017). “Fare evasion in transit networks”.

In: Operations Research 65.1, pp. 165–183.

Dahan, M., Sela, L., and Amin, S. (2022). “Network inspection for detecting strategic attacks”. In:

Operations Research 70.2, pp. 1008–1024.

Dan, T. and Marcotte, P. (2019). “Competitive facility location with selfish users and queues”. In:

Operations Research 67.2, pp. 479–497.

Dantzig, G. B. (1957). “Discrete-variable extremum problems”. In:Operations Research 5.2, pp. 266–

288.

Deineko, V. G. and Woeginger, G. J. (2000). “A study of exponential neighborhoods for the travel-

ling salesman problem and for the quadratic assignment problem”. In: Mathematical Program-

ming 87, pp. 519–542.

Dempe, S. (1987). “A simple algorithm for the-linear bilevel programming problem”. In: Optimiza-

tion 18.3, pp. 373–385.

Dempe, S. and Zemkoho, A. B. (2013). “The bilevel programming problem: reformulations, con-

straint qualifications and optimality conditions”. In: Mathematical Programming 138, pp. 447–

473.

Dinitz, M. and Gupta, A. (2013). “Packing interdiction and partial covering problems”. In: Integer

Programming and Combinatorial Optimization. Ed. by Goemans, M. and Correa, J. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 157–168.

Domı́nguez, L. F. and Pistikopoulos, E. N. (2010). “Multiparametric programming based algorithms

for pure integer and mixed-integer bilevel programming problems”. In: Computers & Chemical

Engineering 34.12, pp. 2097–2106.

Dussault, J.-P., Marcotte, P., Roch, S., and Savard, G. (2006). “A smoothing heuristic for a bilevel

pricing problem”. In: European Journal of Operational Research 174.3, pp. 1396–1413.

Erdos, P., Rényi, A., et al. (1960). “On the evolution of random graphs”. In: Publ. math. inst. hung.

acad. sci 5.1, pp. 17–60.

Fischetti, M., Ljubić, I., Monaci, M., and Sinnl, M. (2017). “A new general-purpose algorithm for

mixed-integer bilevel linear programs”. In: Operations Research 65.6, pp. 1615–1637.

35

Fischetti, M., Ljubić, I., Monaci, M., and Sinnl, M. (2019). “Interdiction games and monotonicity,

with application to knapsack problems”. In: INFORMS Journal on Computing 31.2, pp. 390–

410.

Fischetti, M., Monaci, M., and Sinnl, M. (2018). “A dynamic reformulation heuristic for generalized

interdiction problems”. In: European Journal of Operational Research 267.1, pp. 40–51.

Furini, F., Ljubić, I., Malaguti, E., and Paronuzzi, P. (2020). “On integer and bilevel formulations

for the k-vertex cut problem”. In: Mathematical Programming Computation 12, pp. 133–164.

Furini, F., Ljubić, I., Martin, S., and San Segundo, P. (2019). “The maximum clique interdiction

problem”. In: European Journal of Operational Research 277.1, pp. 112–127.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability. Vol. 174. USA: Freeman

San Francisco.

Gurobi (2024). Gurobi Optimization, LLC. https://www.gurobi.com. Accessed: 2024-07-26.

Gutin, E., Kuhn, D., and Wiesemann, W. (2015). “Interdiction games on Markovian PERT net-

works”. In: Management Science 61.5, pp. 999–1017.

Hansen, P., Jaumard, B., and Savard, G. (1992). “New branch-and-bound rules for linear bilevel

programming”. In: SIAM Journal on Scientific and Statistical Computing 13.5, pp. 1194–1217.

H̊astad, J. (1999). “Clique is hard to approximate within n1−ε”. In: Acta Mathematica 182.1,

pp. 105–142.

Henke, D., Lefebvre, H., Schmidt, M., and Thürauf, J. (2025). “On coupling constraints in linear

bilevel optimization”. In: Optimization Letters 19.3, pp. 689–697.

IBM (2024). CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-

studio/cplex-optimizer. Accessed: 2024-07-26.

Jeroslow, R. G. (1985). “The polynomial hierarchy and a simple model for competitive analysis”.

In: Mathematical Programming 32.2, pp. 146–164.

Kanellakis, P.-C. and Papadimitriou, C. H. (1980). “Local search for the asymmetric traveling

salesman problem”. In: Operations Research 28.5, pp. 1086–1099.

Khorramfar, R., Özaltın, O. Y., Kempf, K. G., and Uzsoy, R. (2022). “Managing Product Transi-

tions: A Bilevel Programming Approach”. In: INFORMS Journal on Computing 34.5, pp. 2828–

2844.

Kleinert, T., Grimm, V., and Schmidt, M. (2021a). “Outer approximation for global optimization of

mixed-integer quadratic bilevel problems”. In: Mathematical Programming 188.2, pp. 461–521.

36

https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

Kleinert, T., Labbé, M., Ljubić, I., and Schmidt, M. (2021b). “A survey on mixed-integer program-

ming techniques in bilevel optimization”. In: EURO Journal on Computational Optimization 9,

p. 100007.

Kleinert, T. and Schmidt, M. (2021). “Computing feasible points of bilevel problems with a penalty

alternating direction method”. In: INFORMS Journal on Computing 33.1, pp. 198–215.

— (2023). “Why there is no need to use a big-M in linear bilevel optimization: A computational

study of two ready-to-use approaches”. In: Computational Management Science 20.1, p. 3.

Köppe, M., Queyranne, M., and Ryan, C. T. (2010). “Parametric integer programming algorithm

for bilevel mixed integer programs”. In: Journal of Optimization Theory and Applications 146.1,

pp. 137–150.

Kuiteing, A. K., Marcotte, P., and Savard, G. (2017). “Network pricing of congestion-free networks:

The elastic and linear demand case”. In: Transportation Science 51.3, pp. 791–806.

Labbé, M., Marcotte, P., and Savard, G. (1998). “A bilevel model of taxation and its application

to optimal highway pricing”. In: Management Science 44.12-part-1, pp. 1608–1622.

Lagos, T. and Prokopyev, O. A. (2023). “On complexity of finding strong-weak solutions in bilevel

linear programming”. In: Operations Research Letters 51.6, pp. 612–617.

Lawler, E. L. (1977). “Fast approximation algorithms for knapsack problems”. In: 18th Annual

Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 206–213.

Lin, Y. H., Tian, Q., and Zhao, Y. (2024). “Unified framework for choice-based facility location

problem”. In: INFORMS Journal on Computing. To appear.

Lozano, L. and Smith, J. C. (2017). “A value-function-based exact approach for the bilevel mixed-

integer programming problem”. In: Operations Research 65.3, pp. 768–786.

Mahdavi Pajouh, F., Boginski, V., and Pasiliao, E. L. (2014). “Minimum vertex blocker clique

problem”. In: Networks 64.1, pp. 48–64.

Mangasarian, O. L. and Shiau, T.-H. (1987). “Lipschitz continuity of solutions of linear inequalities,

programs and complementarity problems”. In: SIAM Journal on Control and Optimization 25.3,

pp. 583–595.

Moore, J. T. and Bard, J. F. (1990). “The mixed integer linear bilevel programming problem”. In:

Operations Research 38.5, pp. 911–921.

Nishizaki, I. and Sakawa, M. (2005). “Computational methods through genetic algorithms for ob-

taining Stackelberg solutions to two-level integer programming problems”. In: Cybernetics and

Systems: An International Journal 36.6, pp. 565–579.

37

Orlin, J. B., Punnen, A. P., and Schulz, A. S. (2004). “Approximate local search in combinatorial

optimization”. In: SIAM Journal on Computing 33.5, pp. 1201–1214.

Prokopyev, O. A. and Ralphs, T. K. (2024). “On the Complexity of Finding Locally Optimal

Solutions in Bilevel Linear Optimization”. In.

Saharidis, G. K. and Ierapetritou, M. G. (2009). “Resolution method for mixed integer bi-level linear

problems based on decomposition technique”. In: Journal of Global optimization 44, pp. 29–51.

Schuurman, P. and Vredeveld, T. (2007). “Performance guarantees of local search for multiprocessor

scheduling”. In: INFORMS Journal on Computing 19.1, pp. 52–63.

Shi, X., Prokopyev, O. A., and Ralphs, T. K. (2023). “Mixed integer bilevel optimization with a

k-optimal follower: a hierarchy of bounds”. In: Mathematical Programming Computation 15.1,

pp. 1–51.

Smith, J. C., Prince, M., and Geunes, J. (2013). “Modern network interdiction problems and algo-

rithms”. In: Handbook of Combinatorial Optimization. Ed. by Pardalos, P. M., Du, D.-Z., and

Graham, R. L. New York, NY: Springer New York, pp. 1949–1987.

Smith, J. C. and Song, Y. (2020). “A survey of network interdiction models and algorithms”. In:

European Journal of Operational Research 283.3, pp. 797–811.

Still, G. (2002). “Linear bilevel problems: Genericity results and an efficient method for computing

local minima”. In: Mathematical Methods of Operations Research 55, pp. 383–400.

Tahernejad, S., Ralphs, T. K., and DeNegre, S. T. (2020). “A branch-and-cut algorithm for mixed

integer bilevel linear optimization problems and its implementation”. In: Mathematical Pro-

gramming Computation 12.4, pp. 529–568.

Tavaslıoğlu, O., Prokopyev, O. A., and Schaefer, A. J. (2019). “Solving stochastic and bilevel mixed-

integer programs via a generalized value function”. In: Operations Research 67.6, pp. 1659–1677.

Tawfik, C. and Limbourg, S. (2019). “A bilevel model for network design and pricing based on a

level-of-service assessment”. In: Transportation Science 53.6, pp. 1609–1626.

Thürauf, J., Kleinert, T., Ljubić, I., Ralphs, T., and Schmidt, M. (2024). BOBILib: Bilevel Opti-

mization (Benchmark) Instance Library. url: https://optimization-online.org/?p=27063.

Vazirani, V. V. (2001). Approximation algorithms. Springer Berlin, Heidelberg.

Vicente, L., Savard, G., and Júdice, J. (1994). “Descent approaches for quadratic bilevel program-

ming”. In: Journal of Optimization Theory and Applications 81.2, pp. 379–399.

Wen, U. and Huang, A. (1996). “A simple tabu search method to solve the mixed-integer linear

bilevel programming problem”. In: European Journal of Operational Research 88.3, pp. 563–571.

38

https://optimization-online.org/?p=27063

Weninger, N. and Fukasawa, R. (2025). “A fast combinatorial algorithm for the bilevel knapsack

problem with interdiction constraints”. In: Mathematical Programming 210.1, pp. 847–879.

Wiesemann, W., Tsoukalas, A., Kleniati, P.-M., and Rustem, B. (2013). “Pessimistic bilevel opti-

mization”. In: SIAM Journal on Optimization 23.1, pp. 353–380.

Zare, M. H., Borrero, J. S., Zeng, B., and Prokopyev, O. A. (2019). “A note on linearized reformu-

lations for a class of bilevel linear integer problems”. In: Annals of Operations Research 272,

pp. 99–117.

Zare, M. H., Prokopyev, O. A., and Sauré, D. (2020). “On bilevel optimization with inexact fol-

lower”. In: Decision Analysis 17.1, pp. 74–95.

Zenklusen, R. (2010). “Matching interdiction”. In: Discrete Applied Mathematics 158.15, pp. 1676–

1690.

39

A Justification of the technical assumptions for Section 1

Recall from Section 1 that the following technical assumptions are made throughout this paper:

• A1: X ̸= ∅, and Y(x) ̸= ∅ for all x ∈ X .

• A2: There exists U > 0 such that ∥y∥1 ≤ U for all y ∈ Y (x) and for all x ∈ X .

• A3: a ∈ Rn
+ and d ∈ Rm

+ .

• A4: z∗ > 0 and c⊤y ≥ 0 for all y ∈ Y (x) and for all x ∈ X .

Assumptions A1 and A2 together guarantee the existence of an optimal solution for both the

follower’s problem given any leader’s feasible decision, and the bilevel problem itself (Vicente et al.

1996). Assumption A1 is standard in bilevel optimization (see, e.g., Tavaslıoğlu et al. (2019) and

Yang et al. (2023)), while Assumption A2 implies that the follower’s feasible set (2) is bounded,

which is also a relatively common assumption in the related studies. For more details on bilevel

programming with unbounded follower’s feasible sets we refer to the survey by Kleinert et al. (2021).

To ensure that any problem instance satisfies Assumption A3, a straightforward transformation

can be applied. Specifically, in the context of [B-BP], if vectors a or d contain negative compo-

nents, then the corresponding variables can be adjusted, or “flipped.” For example, if di < 0 for

some i ∈ [m], then variables yi and y∗i (x) are replaced by 1 − yi and 1 − y∗i (x), respectively, in

both the follower’s and leader’s objective functions. This adjustment renders d non-negative while

the leader’s optimal objective function value of the modified problem remains the same, up to a

constant. Next, for continuous follower’s decisions, Assumption A2 is used to introduce a new

variable ỹi defined as ỹi = U − yi, and then the same arguments apply.

The leader’s objective function in [BP] is assumed to be strictly positive in AssumptionA4. The

non-negativity of vectors a and d in the leader’s objective function, as stated in Assumption A3,

ensures that the leader’s optimal objective function value of [BP] is non-negative, i.e., z∗ ≥ 0.

If z∗ = 0, then the optimal solution to [BP] must be (x,y∗(x)) = (0,0). Therefore, one can simply

assess whether z∗ = 0 is the optimal objective function value of [BP] by verifying that x = 0 belongs

to X , and that the corresponding follower’s rational response satisfies y∗i (x) = 0 for all i in [m].

Finally, the second part of Assumption A4 can be ensure by another transformation. Indeed,

given that the follower’s feasible set is bounded, Assumption A2 implies the existence of a lower

bound, say, denoted by M , for the follower’s objective function value in (1c). Specifically, an

appropriate value for M can be derived such that it is independent of any leader’s feasible decision.

This lower boundM can then be used to reformulate the lower-level problem (1c) into an equivalent

40

problem with the updated cost vector and decision variables, given by c̃ := (c,−M)⊤ and ỹ :=

(y, ym+1)
⊤, respectively, along with the additional constraint ym+1 = 1.

Comments on our assumptions. Assumptions A3 and A4 are essential for establishing the

approximation results in Section 5, but they also introduce certain limitations. Assumption A3

requires the cost vector d to be non-negative, which is achieved by “flipping” variables when negative

components are present. Although this transformation preserves the optimal objective function

value up to a constant, it can alter the structure of the follower’s feasible set and may disrupt

properties such as total unimodularity or other structure critical for some approximation algorithms.

That said, many bilevel optimization problems with such exploitable lower-level structure,

such as interdiction problems, naturally use cost vectors with non-negative entries; see, for ex-

ample, Weninger and Fukasawa (2025). The non-negativity of a and d is mainly required for the

scaling step in Algorithm 2. This requirement aligns with classical assumptions imposed by many

scaling-based approximation algorithms in single-level combinatorial optimization (Vazirani 2001).

Both Assumptions A4 and A5 can be enforced by “flipping” decision variables or introducing

an artificial variable in the lower-level problem. In such cases, when the lower-level problem is

solved approximately, the bound becomes c⊤yA(x) ≥ (1− δ)c⊤y∗(x) + δM , which is aligned with

standard definition in the literature (Vavasis 1993). This construction may weaken the approxima-

tion guarantees in Section 4, including Theorem 1, by a term dependent on M , with the additional

error scaling with δ. Moreover, “flipping” variables can affect the gap in the definition of ε-local

optimality (refer to our discussion in Section 3) by a term dependent on ∥a∥1, ∥d∥1, U , and that

scales with ε. These considerations highlight the need for systematic theoretical and empirical

analysis of how such transformations impact solution quality, which we leave for future research.

Coupling constraints. Coupling constraints arise when the follower’s optimal decision is part

of the leader’s feasible set, defined as X = {x ∈ {0, 1}n : H1x+H2y
∗(x) ≤ h}. Consequently, the

feasibility of a leader’s decision can be influenced by the follower’s rational response. To address

this issue, our approach can be extended by modifying the definition of a feasible solution for the

leader. Indeed, a step that verifies whether (x,y∗(x)) is feasible can simply be added to Improve.

Extending the inexact follower approach to bilevel programs with coupling constraints presents

additional challenges. Specifically, while
(
x,yA(x)

)
might satisfy the coupling constraints, (x,y∗(x))

might not. Yet, if the lower-level problem is solved using a δ-approximation algorithm A, then a

sufficient condition can be derived under which we ensure that if both X (δ) ⊆ X , and
(
x,yA(x)

)
∈

X (δ), then (x,y∗(x)) ∈ X . This modification is straightforward. Hence, we omit it for brevity.

41

B Algorithms and discussions for Section 3

In this section, we divide the discussion into three parts. First, in Section B.1, we describe

the weak local search algorithm and illustrate it through the example from Section 3.3. Then, by

constructing a particular class of bilevel MILPs, we show that both standard and weak local search

require an exponential number of improving steps to converge in the worst case. Second, in Sec-

tion B.2, we demonstrate that for any ε ≥ 0, verifying whether a given leader’s feasible decision is ε-

locally optimal is an NP-hard problem in general. Lastly, in Section B.3, we describe a greedy heuris-

tic for the maximum weighted clique problem, which is used in the example discussed in Section 3.3.

B.1 On (weak) local search and its complexity

To begin, we introduce the concept of weak local search, which generalizes the standard local

search algorithm. The main distinction between the two lies in their approach to computing the

leader’s objective function when searching for an improving solution. In standard local search, the

leader’s objective function is evaluated using the follower’s rational response. In contrast, weak

local search relies on evaluating the leader’s objective function using an inexact follower’s response,

e.g., an approximate solution to the lower-level problem (1c), or any follower’s feasible decision.

Finding (weak) local optimal solutions. The weak local search algorithm is essentially a

standard local search, which uses an inexact follower’s response (obtained with an algorithm A) to

compute the leader’s objective function. It iteratively performs a neighborhood search by calling

Improve (see Algorithm 1 and our discussion in Section 5.1) until no new improving solution (in

terms of the leader’s objective function with the inexact follower’s response) is found.

Algorithm 3 - A-LSA - weak local search

1: function A-LSA(x0, NX , a, d, A)

2: k ← 0 and xk ← x0

3:
(
“answer”,xk+1

)
← Improve

(
xk, NX ,a,d,A, 0

)
4: while “answer” is “Yes” do

5:
(
“answer”,xk+1

)
← Improve

(
xk, NX ,a,d,A, 0

)
6: Set xk := xk+1

7: Set k := k + 1

8: Return xk

The weak local search algorithm, denoted as A-LSA and described in Algorithm 3, takes as

inputs an initial leader’s feasible decision x0, a neighborhood function NX , vectors a and d, and

42

an algorithm A that returns a unique feasible solution to the lower-level problem (1c). Note that,

in contrast to (ε,A)-LSA (see Algorithm 2 in Section 5.1), no minimum gap is required to accept a

neighbor as an improving solution within Improve. That is, γ = 0; recall Algorithm 1 .

Clearly, A-LSA returns a weak local optimal solution within a finite number of calls to Improve,

but does not necessarily return a local optimal solution. Without any surprise, if the lower-level

problem is solved exactly, then A-LSA is essentially the standard local search. An illustrative

example of A-LSA applied to the problem from Section 3.3 is provided bellow.

Example 1 (continued) We consider the example from Section 3.3. Specifically, we fix γ to 0,

and the initial leader’s feasible decision x0 to 0, i.e., the decision that consists of not interdicting

any vertex in the graph G. Also, Improve is chosen such that the first improving solution found

during the neighborhood search is selected and returned. Therefore, the maximum weighted clique

in the graph G is given by C = {1, 2, 3, 4} and ω(C) = 300.

Exact follower. A-LSA starts by searching for an improving solution in the neighborhood of

x0. When calling Improve on x0, we obtain
(
“Yes”,x1

)
, where x1 ∈ NX (x

0) consists to interdict

vertex 1, that is x11 = 1 and x1i = 0 otherwise. The obtained clique C∗ has value ω(C∗) = 220 < 299.

Next, x0 is replaced by x1. Then, Improve is called on x1 to obtained
(
“No”,x1

)
. Therefore, the

algorithm ends and returns x∗ = x1.

Inexact follower. If the maximum clique problem is solved using A, as described in Algo-

rithm 4, then the algorithm returns the decision xA that consists of interdicting vertex 9. ■

Computational complexity of local search. We demonstrate that any quadratic binary

program (QBP) can be reformulated as a bilevel MILP. Specifically, we show that any improving

step (for local search) in QBP corresponds to an equivalent improving step in the corresponding

bilevel problem. Then, by leveraging the existing results on the runtime complexity of local search in

the context of QBP (Papp 2016), we show that for bilevel MILPs, both the standard and weak local

search methods require an exponential number of improving steps to converge in the worst case.

Formally, consider the problem of finding an optimal solution to a QBP given by:

[QBP] : z∗QP := min
x∈{0,1}n

x⊤Qx+ b⊤x, (12)

where b ∈ Rn and Q ∈ Rn×n is a symmetric matrix, with its entries denoted by {qij}ni,j=1.

A QBP can be linearized by introducing a new variable yij = xixj for all i, j ∈ [n]. Then,

standard linearization techniques for the resulting bilinear terms can be applied (Glover 1975; Mc-

Cormick 1976). Instead, we derive a bilevel problem as follows. To enforce that yij = 0 whenever

43

either xi = 0 or xj = 0, we introduce a lower-level problem, which can be either a 0-1 or a linear

program. That is, we obtain:

[QP-BP] : z∗BP := min
x,y∗(x)

b⊤x+
n∑

i=1

n∑
j=1

qijy
∗
ij(x) (13a)

s.t. x ∈ {0, 1}n , y∗(x) ∈ argmax
y∈YBP (x)

n∑
i=1

n∑
j=1

yij , (13b)

where, given a leader’s feasible decision x ∈ {0, 1}n, we define:

YBP (x) :=
{
y ∈ [0, 1]n×n : yij ≤ xi , yij ≤ xj ∀ i, j ∈ [n]

}
, (14)

as the follower’s feasible set in (13b). Although, the follower’s decision variables are all continuous,

the follower’s optimal decisions are always binary. Therefore, without any loss of generality, we can

also consider a follower’s feasible set, where, instead of (14), the decision variables are all binary,

i.e., y ∈ {0, 1}n×n, or any mix of binary and continuous variables.

To stay concise, we omit the definitions of the neighborhood and the improving solution for

quadratic binary programs. Some of the concepts outlined in Section 3, including local optimality,

can also be defined in the context of quadratic binary programming (Papp 2016).

Next, we demonstrate that the two considered problems, namely, [QBP] and [QP-BP], are

essentially equivalent. Specifically, any feasible decision to the first problem can be derived from a

feasible decision to the second problem, and vice versa. Formally:

Lemma 2. For any x ∈ {0, 1}n, x is a feasible decision to (12) if and only if (x,y∗(x)) is a feasible

decision to (13), where y∗(x) is the optimal solution to the lower-level problem (13b). In addition,

any feasible decision x̃ which is in the neighborhood of x, i.e., x̃ ∈ N{0,1}n(x), is an improving

solution to (12) if and only if it is an improving solution for (13).

Lemma 2 implies that local search in bilevel MILPs is at least as challenging as in quadratic

binary programming. Additionally, it establishes that a solution x is locally optimal for [QBP] if

and only if it is locally optimal for [QP-BP]. The proof of Lemma 2 is straightforward and hence,

it is omitted for brevity. Next, we demonstrate that in the worst case, local search may require an

exponential number of improving steps for the leader. Formally:

Proposition 4. Given a fixed positive integer k ≥ 1, the standard local search with respect to the

k-flip neighborhood function returns a local optimal solution to (13) in an exponential number of

improving steps for the leader.

44

Proof. Using Theorem 2 by Papp (2016), there exists a class of [QBP], where local search requires

an exponential number of improving steps to converge to a local minimum using the k-flip neigh-

borhood function (recall Definition 4). Then, this class can be reduced to a bilevel program by

applying Lemma 2. Additionally, we have that each improving solution to the former problem is

an improving solution to the latter problem, and vice versa.

However, in the bilevel MILPs formulation (13b), some elements of the matrix Q may be

negative. Refer to the discussion following Assumption A3 for the details on handling negative

coefficients in the leader’s objective function. By applying Lemma 2, we can adapt the proof of

Theorem 2 by Papp (2016) to the bilevel context, thereby obtaining the desired result. ■

As a direct consequence of Proposition 4, we make several important observations:

• Recall that the follower’s feasible set is given by (14) i.e., the follower’s decision variables are

all continuous. As a result, applying standard local search to [C-BP] may require an exponential

number of improving steps for the leader in the worst case.

• We mentioned earlier that the follower’s optimal decision variables in [QP-BP] are always

binary. Therefore, the follower’s feasible set YBP (x) in (14) can also be represented as a discrete

set. As a result, applying standard local search to [B-BP] requires an exponential number of

improving step to converge in the worst case.

• Consider a simple heuristic that takes as an input a linear 0-1 program, solves its LP re-

laxation, and then returns a feasible decision by rounding. In general, this procedure does not

necessarily return an optimal decision (or even feasible); however, it returns the optimal solution

to the considered follower’s problem in [QP-BP]. Hence, A-LSA requires an exponential number of

improving steps in the worst case, whenever A is a naive LP-based heuristic method.

B.2 Verifying (approximate) local optimality in bilevel MILP is NP-hard

We show that when the follower’s decisions are all binary, verifying whether a given leader’s

feasible decision is an ε-local optimal solution is an NP-hard problem. This result is established by

reducing the Subset Sum Problem (SSP), which is known to be NP-complete (Garey and Johnson

1979), to verifying whether a given leader’s feasible decision is ε-local optimal for any fixed ε ≥ 0.

The SSP problem consists of answering the following question: given a set of non-negative integers

w1, . . . , wn and a positive target W , is there a subset I ⊆
{
1, . . . , n

}
such that

∑
i∈I wi =W?

Proposition 5. Given ε ≥ 0, there exist both an instance of [B-BP] and a leader’s feasible decision

x ∈ X such that the answer to SSP is “Yes” if and only if xε is ε-locally optimal.

45

Proof. Fix ε ≥ 0. The proof consists in reducing SSP into checking ε-local optimally of some given

leader’s feasible decision x to [B-BP]. Consider the following bilevel MILP:

min
x,y

n∑
i=1

wiyi + x1 +
W + 1

2

1 + ε
x2 (15a)

s.t. x ∈ {0, 1}2, (15b)

y ∈ argmax
ỹ

−
n∑

i=1

wiỹi (15c)

W − 1

2
x1 −Wx2 ≤

n∑
i=1

wiỹi ≤
n∑

i=1

wi, (15d)

ỹ ∈ {0, 1}n. (15e)

Solving SSP can be reduced to verifying that (x1, x2) = (0, 0) is ε-local optimal for (15). We

first introduce f (x1, x2, “answer”), a function that returns the leader’s objective function value

of (15) for a given pair (x1, x2), where “answer”∈ {“Yes, “No”} corresponds to the answer to

SSP. All possible values that can be taken by f are given in Table 4.

“answer”
(x1, x2)

(0, 0) (1, 0) (0, 1) (1, 1)

“Yes” W W + 1 2W+1
2(1+ε)

2W+1
2(1+ε) + 1

“No” ≥W + 1 ≥W + 2 2W+1
2(1+ε)

2W+1
2(1+ε) + 1

Table 4: Summary of the leader’s objective function values of (15), denoted by f , for different pairs (x1, x2) of
leader’s feasible decisions and the answer to SSP.

Next, we show that if “answer” is “Yes,” then (x1, x2) = (0, 0) is ε-locally optimal. Indeed, from

Table 4, note that f(0, 0, “Yes”) =W ≤ (1+ε)(W+1) = (1+ε)f(1, 0, “Yes”). Also, f(0, 0, “Yes”) ≤

(1 + ε)f(0, 1, “Yes”) ≤ (1 + ε)f(1, 1, “Yes”). Thus, (x1, x2) = (0, 0) is ε-locally optimal.

Conversely, if (x1, x2) = (0, 0) is ε-locally optimal, then “answer” must be equal to “Yes.” In-

deed, if “answer” is equal to “No,” then (x1, x2) = (0, 1) satisfies f(0, 0, “No”) ≥W +1 > W + 1
2 =

(1 + ε)f(0, 1, “No”). Consequently, (x1, x2) = (0, 0) is not ε-locally optimal. Therefore, verifying

that (x1, x2) = (0, 0) is ε-locally optimal is equivalent to solving SSP. ■

46

B.3 Greedy heuristic for the maximum weighted clique problem

To ensure a comprehensive discussion, we include algorithm A, which is use to find a weak local

optimal solution for the example in Section 3.3. This method, see Algorithm 4, is a simple greedy

heuristic (Wu and Hao 2015).

Algorithm 4 - A - Sequential greedy heuristic for maximum weighted clique

Require: Graph G = (V,E)

1: function A(V,E)

2: Initialize C ← ∅

3: while V ̸= ∅ do

4: Select vertex v ∈ V with maximum degree (break ties by highest weight)

5: Add v to C: C ← C ∪ {v}

6: Update V : V ← {u ∈ V \ {v} | u is adjacent to all vertices in C}

7: return C

Algorithm 4 takes a weighted graph G = (V,E) as input and returns a weighted clique C. It

begins with an empty clique and iteratively selects a vertex with the maximum degree. Ties are

broken by choosing the vertex with the highest weight (then ties are broken arbitrarily). Next, the

selected vertex is added to the clique C, and the graph G is then updated by retaining only vertices

connected to all current members of C. This process continues until no vertices remain in G.

47

C Proofs for Section 4

In this section, we provide the proofs of our results from Section 4. Specifically, the proof of

Proposition 1 is in Section C.1, and the proof of Theorem 1 is in Section C.2. Next, we present the

details of the empirical evaluation of the maximum gap associated with Theorem 1 in Section C.3.

C.1 Proof of Proposition 1

Proof. First, we fix a leader’s feasible decision x ∈ NX (x
ε,A), which is in the neighborhood of xε,A.

Then, by the definition of weak ε-local optimality (recall Definition 4), we have that:

a⊤xε,A + d⊤yA(xε,A) ≤ (1 + ε)
(
a⊤x+ d⊤yA(x)

)
. (16)

Note that yA(xε,A) and yA(x) are both δ-approximate solutions to the follower’s problem (1c),

given xε,A and x, respectively. Hence, it follows that:

(1− δ) c⊤y∗(xε,A) ≤ c⊤yA(xε,A) and c⊤yA(x) ≤ c⊤y∗(x),

where the first inequality holds by (6) and the second one by the feasibility of yA(x).

Next, recall our assumption that d = αc, which implies:

(1− δ)
(
a⊤xε,A + d⊤y∗(xε,A)

)
= (1− δ)

(
a⊤xε,A + αc⊤y∗(xε,A)

)
≤ (1− δ)a⊤xε,A + αc⊤yA(xε,A) by the definition of yA(xε,A)

≤ a⊤xε,A + d⊤yA(xε,A) since 0 ≤ δ < 1 and d = αc

≤ (1 + ε)
(
a⊤x+ d⊤yA(x)

)
by (16)

= (1 + ε)
(
a⊤x+ αc⊤yA(x)

)
≤ (1 + ε)

(
a⊤x+ αc⊤y∗(x)

)
by the definition of y∗(x)

= (1 + ε)
(
a⊤x+ d⊤y∗(x)

)
.

Therefore, by observing that 1+ε
1−δ = 1 + ε+δ

1−δ , it follows that:

a⊤xε,A + d⊤y∗(xε,A) ≤
(
1 +

ε+ δ

1− δ

)(
a⊤x+ d⊤y∗(x)

)
,

which implies that xε,A is ε+δ
1−δ -locally optimal with respect to NX . ■

48

C.2 Proof of Theorem 1

First, for simplicity of our discussion, we assume that the follower’s rational response is unique

for any given leader’s feasible decision. At the end of the proof, we discuss how this assumption

can be relaxed in an appropriate manner to make sure that the general result holds.

Next, assume that A always returns a follower’s feasible decision that is within a certain neigh-

borhood of the follower’s rational response. Then, a weak ε-local optimal solution with respect to

A is approximate locally optimal. This assertion is formalized in the following technical lemma.

Lemma 3. Let A be an algorithm that returns a feasible solution yA(x) to the follower’s prob-

lem (1c), which is within a neighborhood of the optimal solution y∗(x) for any x ∈ X , i.e.,

∥∥yA(x)− y∗(x)
∥∥
1
≤ r, (18)

for any leader’s feasible decision x ∈ X , where r > 0 does not depend on x. Then, given ε ≥ 0 and

the lower bound z > 0 to [BP], there exists Π > 0, defined as:

Π = Π(ε, r, z) := ε+
(2 + ε) rdmax

z
,

such that if xε,A is a weak ε-local optimal solution with respect to NX and A, then xε,A is also

Π-locally optimal with respect to NX .

Proof. Assume that xε,A is a weak ε-local optimal solution with respect to NX and A. Then,

consider the linear mapping d : Rm → R defined as:

y 7→ d⊤y,

which is dmax-Lipschitz continuous. By the Lipschitz continuity property of the linear mapping,

together with (18), we have that for any x ∈ X :

∥∥∥d⊤y∗(x)− d⊤yA(x)
∥∥∥
1
≤ dmax

∥∥y∗(x)− yA(x)
∥∥
1
≤ dmaxr,

which implies that:

−rdmax ≤ d⊤y∗(x)− d⊤yA(x) ≤ rdmax. (19)

49

Given that (19) holds for any leader’s feasible decision x, we conclude that:

a⊤x+ d⊤yA(x) ≤ a⊤x+ d⊤y∗(x) + rdmax, (20)

and, in particular, (19) holds for xε,A. That is:

a⊤xε,A + d⊤y∗(xε,A) ≤ a⊤xε,A + d⊤yA(xε,A) + rdmax. (21)

Next, fix an arbitrary leader’s feasible decision in the neighborhood of xε,A, say, x ∈ NX (x
ε,A).

By the definition of weak ε-local optimality, the following inequality holds (recall Definition 4):

a⊤xε,A + d⊤yA(xε,A) ≤ (1 + ε)
(
a⊤x+ d⊤yA(x)

)
. (22)

Using the previously derived inequalities and the definition of weak ε-local optimality, we obtain:

a⊤xε,A + d⊤y∗(xε,A) ≤ a⊤xε,A + d⊤yA(xε,A) + rdmax by (21)

≤ (1 + ε)
(
a⊤x+ d⊤yA(x)

)
+ rdmax by (22)

≤ (1 + ε)
(
a⊤x+ d⊤y∗(x) + rdmax

)
+ rdmax by (20)

≤ (1 + ε)
(
a⊤x+ d⊤y∗(x)

)
+ (2 + ε)rdmax.

Since z > 0 is a strictly positive lower bound to [BP], for any x ∈ X , we have that:

1 ≤ a⊤x+ d⊤y∗(x)

z
.

Hence,

(2 + ε)rdmax ≤ (2 + ε)rdmax
a⊤x+ d⊤y∗(x)

z
,

which implies that:

a⊤xε,A + d⊤y∗(xε,A) ≤
(
1 + ε+

(2 + ε) rdmax

z

)(
a⊤x+ d⊤y∗(x)

)
.

If we define:

Π := ε+
(2 + ε) rdmax

z
,

then we obtain the desired result. That is, xε,A is Π-locally optimal with respect to NX . ■

50

Next, we discuss several classical proximity theory results, which we exploit to show Theorem 1.

Assume that a δ-approximation algorithm A is available to solve the follower’s problem (1c) for

any given leader’s decision x ∈ X , where δ ∈ Q∩ [0, 1). Also, fix a leader’s feasible decision x ∈ X .

Furthermore, we introduce F1 and F2, the constraint matrices associated with the binary and

continuous follower’s decision variables, respectively, in the follower’s feasible set (2). Similarly, we

introduce c1 and c2, the cost vectors in the follower’s objective function associated with the binary

and continuous follower’s decision variables, respectively. That is, given y ∈ Y(x), we have:

Fy = F1y1 + F2y2 and c⊤y = c⊤1 y1 + c⊤2 y2,

where y1 ∈ {0, 1}m1 and y2 ∈ Rm2
+ . We define the parameterized vector b (δ) ∈ Rq+1 as follows:

b (δ) :=

 f − Lx

− (1− δ)φ(x)

 ,

where φ(x) is the follower’s optimal value function at x. Next, we define matrices F̃1 and F̃2:

F̃1 :=

 F1

−c1

 and F̃2 :=

 F2

−c2

 .

Moreover, the follower’s optimal decision, obtained by solving the follower’s problem (1c)

in [BP], can actually be found by solving the following mixed-integer feasibility problem:

min
y1,y2,s

0

s.t. F̃1y1 + F̃2y2 + s = b (0) ,

y1 ∈ {0, 1}m1 , y2 ∈ Rm2
+ , s ∈ Rq+1

+ ,

(24)

where variables s (referred to as “surplus” variables), are introduced to formulate the follower’s

feasible set with equality constraints rather than inequalities.

Also, y∗(x) is a follower’s feasible decision with binary and continuous components that are

assumed to be given by y∗
1(x) and y∗

2(x), respectively. In fact, y∗(x) is the optimal solution of (1c)

if and only if there exists s∗ ∈ Rq+1
+ such that (y∗

1(x),y
∗
2(x), s

∗(x)) is the optimal solution of (24).

51

Similarly, we consider a problem, where the follower’s optimality condition is relaxed. That is:

min
y1,y2,s

0

s.t. F̃1y1 + F̃2y2 + s = b (δ)

y1 ∈ {0, 1}m1 , y2 ∈ Rm2
+ , s ∈ Rq+1

+ ,

(25)

which is feasible since a feasible solution can be derived from the follower’s feasible decision yA(x)

obtained by calling A. Indeed, one can select the binary and continuous components yA
1 (x) and

yA
2 (x), respectively, and then compute the surplus variable sA(x).

We are interested in the relationship between changes in the right-hand side (r.h.s.) and changes

in the corresponding optimal decisions of (25). We rely on a result by Mangasarian and Shiau

(1987), which demonstrates that, if (25) does not contain any binary variables (i.e., m1 = 0),

then the mapping from the set of r.h.s. vectors to the set of feasible solutions to (25) is Lipschitz

continuous. Formally:

Theorem 5 (Theorem 2.4 by Mangasarian and Shiau (1987)). Assume that F̃1 = 0 and that(
yA
1 (x),y

A
2 (x), s

A(x)
)⊤

is an optimal solution of (25). Then, there exists (y∗
1(x),y

∗
2(x), s

∗(x))⊤,

an optimal solution of (24), and a positive constant µ1

(
F̃2

)
> 0 that only depends on F̃2 such that:

∥∥∥(yA
1 (x),y

A
2 (x), s

A(x)
)⊤ − (y∗

1(x),y
∗
2(x), s

∗(x))⊤
∥∥∥
∞
≤ µ1

(
F̃2

)
∥b(0)− b(δ)∥1 .

A direct consequence of Theorem 5 is that whenever F̃1 = 0, we have:

∥∥y∗(x)− yA(x)
∥∥
1
≤
∥∥∥(yA

1 (x),y
A
2 (x), s

A(x)
)⊤ − (y∗

1(x),y
∗
2(x), s

∗(x))⊤
∥∥∥
1

≤ (m+ q + 1)
∥∥∥(yA

1 (x),y
A
2 (x), s

A(x)
)⊤ − (y∗

1(x),y
∗
2(x), s

∗(x))⊤
∥∥∥
∞

≤ µ1
(
F̃2

)
· (m+ q + 1) δφ(x),

(26)

where the last inequality follows from the definition of b(δ), i.e., ∥b(0)− b(δ)∥1 = δφ(x).

Interestingly, a similar result has been presented earlier by Blair and Jeroslow (1977), where the

decision variables are mixed-integer or pure integer. To leverage the result by Blair and Jeroslow

(1977), the parameters in (25) have to be integers. This is not a restrictive assumption in our case.

Indeed, recall that all the parameters in the bilevel program are assumed to be rational. There-

fore, without loss of generality, we assume that the entries of F, L, and f in the follower’s feasible

52

set (1c) are all integers. This assumption is justified by the fact that we can multiply every compo-

nent of F, L, and f by some large integer in order to obtain integer entries. As a result, for a given

x ∈ X , and since δ ∈ Q, we can assume without loss of generality that b(δ), F̃1 and F̃2 have only

rational entries. Hence, we assume they have integral entries. Consequently, the surplus vector s

as described earlier can also be assumed to have integer components.

Theorem 6 (Theorem 2.1 from Blair and Jeroslow (1977)). There exists two positive constants

µ2, µ3 > 0 that does not depends on the r.h.s of (25) such that if
(
yA
1 (x),y

A
2 (x), s

A(x)
)⊤

is the opti-

mal solution of (25), then there exists an optimal solution (y∗
1(x),y

∗
2(x), s

∗(x))⊤ of (24) such that:

∥∥∥(yA
1 (x),y

A
2 (x), s

A(x)
)⊤ − (y∗

1(x),y
∗
2(x), s

∗(x))⊤
∥∥∥
1
≤ µ2 ∥b(0)− b(δ)∥1 + µ3.

In addition, if F̃2 = 0, that is, if the follower’s decision variables are all binary, then µ3 = 0.

The constant µ2 and µ3 in Theorem 6 only depends on the follower’s parameters, that is, F̃1, F̃2

and c. Moreover, the optimal solution of the follower’s problem (1c) is always non-negative and

bounded; recall Assumptions A2 and A4. Therefore, together with ∥b(0)− b(δ)∥1 = δφ(x) and

by the inequality in (26), we have that φ(x) ≤ cmaxmU . Next, we define:

γ1 = max
{
µ1

(
F̃2

)
·m(m+ q + 1)cmaxU, µ2 ·mcmaxU

}
and γ2 = µ3.

As a direct consequence of Theorems 5 and 6, given the follower’s feasible decision yA(x) to the

follower’s problem (1c), and the follower’s optimal decision y∗(x), we have that:

∥∥y∗(x)− yA(x)
∥∥
1
≤
∥∥∥(yA

1 (x),y
A
2 (x), s

A(x)
)⊤ − (y∗

1(x),y
∗
2(x), s

∗(x))⊤
∥∥∥
1
≤ γ1δ + γ2, (27)

where γ2 = 0 whenever the follower’s decision variables are either all binary or all continuous.

Another observation is that γ1 and γ2 do not depend on the leader’s feasible decision x.

Remark 2. Our definition of δ-approximation is not restricted to the follower’s decisions containing

solely binary variables. Indeed, there exist approaches, such as first-order methods, that are used to

solve large-scale LPs with a given approximation gap (Applegate et al. 2023). Hence, the discussion

before applies also whenever all the follower’s decision variables are all continuous. ■

From (27), we conclude that r in Lemma 3 can be set to r = γ1δ+γ2. Consequently, Theorem 1

follows from Lemma 3. That is, any weak ε-local optimal solution with respect to a δ-approximation

53

algorithm is, indeed, an approximate local optimal solution to [BP].

Finally, recall our assumption on the uniqueness of the follower’s rational response. We exploit

this assumption in our proof above as Theorems 5 and 6 only provide the existence of a follower’s

rational response to problem (24). Indeed, without the uniqueness assumption, the follower’s de-

cisions obtained in Theorems 5 and 6 may not be the optimistic ones. To relax this uniqueness

assumption and to provide the proof for the more general case, the objective functions of prob-

lems (24) and (25) can be modified by replacing 0 with d⊤
1 y1+d⊤

2 y2 (where d1 and d2 are defined

in a similar manner to c1 and c2). Then, however, Theorem 6 requires that if the right-hand sides

equals zero in problems (24) and (25), then the corresponding optimal objective function values

must also be equal to zero (Blair and Jeroslow 1977). Hence, to ensure that this additional re-

quirement holds, we need to introduce another variable and an extra constraint into problems (24)

and (25), similar to the approach, which is used to justify Assumption A4 in Appendix A.

C.3 Details for the empirical performance evaluation of Section 4

To empirically evaluate the empirical maximum gap from Figure 2 on the interdiction maximum

clique problem (see Section 3.3 for further details), we construct our instances as follows:

Graph generation. We generate 50 Erdős–Rényi random graphs G = (V,E), each with n = 40

nodes and edge density p = 0.5 (Erdos, Rényi, et al. 1960). For the follower’s problem, each node v

receives a weight drawn uniformly at random from {1000+1, . . . , 1000+10 ·deg(v)}, where deg(v)

denotes the degree of node v. The leader’s objective function vectors are generated uniformly at

random, i.e., a ∼ U([1, 10]40), d ∼ U([10, 100]40), and the interdiction budget is set to h = 4.

Experimental details. For each instance, we construct a parameter grid over δ and ε, ranging

from 0 to 0.5 in increments of 0.0263 (i.e., 20 evenly spaced values for each parameter). For each

pair, to obtain a leader’s feasible decision with the desired property (as in Theorem 1), we run

the (ε,A)-LSA algorithm using the 2-flip neighborhood function, starting from the initial leader’s

solution x = 0. The follower’s problem is solved using the MILP solver by (Gurobi 2024) with a

pre-specified optimality gap equal to δ.

Performance evaluation. For each (δ, ε) pair, the performance metric (specifically, the maxi-

mum empirical gap) is computed for all 50 independently generated instances. The reported results

represent the average empirical maximum gap across all instances.

54

D Proofs and additional discussion for Section 5

In Appendix D.1, we provide an example for (ε,A)-LSA applied to the problem from Section 3.3.

Then, in Appendix D.2, we provide the proofs for all the results from Section 5.2. In Section D.3, we

present an instance of bilevel MILPs, where (ε,A)-LSA is asymptotically sharp. In Section D.4, we

extend the discussion from Section D.2 to a follower with mixed-integer decision variables. Finally,

in Section D.5, we discuss relevant extensions to our approach.

D.1 Example of (ε,A)-LSA

We consider the example from Section 3.3. We explore two variants of (ε,A)-LSA: one, where

the maximum weighted clique problem is solved exactly, and the other, where it is solved using the

greedy search algorithm A, described in Algorithm 4. For both variants, we fix ε = 1 and γ = 0.

Exact follower. The maximum weighted clique is C = {1, 2, 3, 4} with ω(C) = 300. Thus, qd =

ω(C)ε
4(m+1)(1+ε) = 300

104 . The original weight vector is w := (80, 79, 71, 70, 10, 10, 10, 10, 90, 20, 20, 89)⊤.

After scaling in line 7 of Algorithm 2 (see Section 5.1) and applying the ceiling function to the

scaled vector, the vector becomes w′ := qd (28, 28, 25, 25, 4, 4, 4, 4, 32, 7, 7, 31)
⊤.

The loop at line 10 begins with x0, where no vertex is interdicted. Then, x1, which interdicts

only vertex 1, is an improving solution in terms of the leader’s objective function. The loop

continues since the leader’s objective function has not been halved. Applying Improve to x1

returns the answer
(
“No”,x1

)
, indicating that x1 is locally optimal with respect to the scaled

leader’s objective. The algorithm stops and returns xε = x1.

Inexact follower. The clique obtained by calling A is C̃ = {9, 10, 11, 12} with ω(C̃) = 219.

Thus, qd = ω(C̃)ε
4(m+1)(1+ε) = 219

104 . After applying the scaling step of (ε,A)-LSA in line 7, the vector

becomes w′ := qd (38, 38, 34, 34, 5, 5, 5, 5, 43, 10, 10, 43)
⊤. The loop at line 10 begins with x0, where

no vertex is interdicted. Then, x12, which interdicts only vertex 12, is an improving solution. Calling

Improve to x12 returns the answer
(
“No”,x12

)
. The algorithm stops and returns xε,A = x12.

D.2 Proofs for Section 5.2

Proof of Lemma 1. Given some xi,k ∈ X , we assume that the answer returned by Improve is(
“Yes”,xi,k+1

)
. Hence, xi,k+1 ∈ NX (x

i,k) is an arbitrary neighbor of xi,k that is an improving

solution in terms of the leader’s objective function with scaled vectors a′ and d′.

55

Recall line 6 of Algorithm 2 (see Section 5.1) for the definition of qa and qd. We have that:

∆A
(
xi,k,xi,k+1,a′,d′

)
= a′

⊤
xi,k + d′⊤yA(xi,k)− a′

⊤
xi,k+1 − d′⊤yA(xi,k+1)

=
n∑

j=1

qa

⌈
aj
qa

⌉(
xi,kj − x

i,k+1
j

)
+

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉(
yAℓ (x

i,k)− yAℓ (xi,k+1)
)

= qa

n∑
j=1

⌈
aj
qa

⌉
∆x,i,k

j + qd

m∑
ℓ=1

⌈
dℓ
qd

⌉
∆y,i,k

ℓ > 0, (28a)

where the strict positive inequality in (28a) comes from the fact that xi,k+1 is an improving solution;

also, we define ∆x,i,k and ∆y,i,k as follows:

∆x,i,k
j :=


1 if xi,kj = 1 and xi,k+1

j = 0,

0 if xi,kj = xi,k+1
j ,

−1 if xi,kj = 0 and xi,k+1
j = 1,

and,

∆y,i,k
ℓ :=


1 if yAℓ (x

i,k) = 1 and yAℓ (x
i,k+1) = 0,

0 if yAℓ (x
i,k) = yAℓ (x

i,k+1),

−1 if yAℓ (x
i,k) = 0 and yAℓ (x

i,k+1) = 1.

It follows from (28a) that the gap ∆A (xi,k,xi,k+1,a′,d′) is a linear combination of qa and qd

with integer coefficients. That is:

∆A
(
xi,k,xi,k+1,a′,d′

)
= kaqa + kdqd,

where ka =
∑n

j=1

⌈
aj
qa

⌉
∆x,i,k

j , and, similarly, kd =
∑n

ℓ=1

⌈
dℓ
qd

⌉
∆y,i,k

ℓ .

Next, we present a bound for the maximum absolute value that can be taken by the integer

coefficients ka ∈ Z and kd ∈ Z in this linear combination. We start with the definition of ka:

|ka| =

∣∣∣∣∣∣
n∑

j=1

⌈
aj
qa

⌉
∆x,i,k

j

∣∣∣∣∣∣ ≤
n∑

j=1

(
aj
qa

+ 1

)
(29a)

≤ n
(
amax

qa
+ 1

)
= n

(
4amaxn(1 + ε)

Kε
+ 1

)
=: ba, (29b)

where the equality in (29b) follows from the definition of qa; see line 6 in Algorithm 2. In the same

56

spirit, we can derive a similar bound for kd, namely:

|kd| =

∣∣∣∣∣
m∑
ℓ=1

⌈
dℓ
qd

⌉
∆y,i,k

ℓ

∣∣∣∣∣ ≤
m∑
ℓ=1

(
dℓ
qd

+ 1

)
(30a)

≤ m
(
dmax

qd
+ 1

)
= m

(
4dmax(m+ 1)(1 + ε)

Kε
+ 1

)
=: bd, (30b)

where the equality in (30b) follows from the definition of qd and the fact that U = 1; recall that

the follower’s decision variables are assumed to be all binary.

Next, consider the following pure integer linear program:

min
ka∈Z, kd∈Z

kaqa + kdqd

kaqa + kdqd > 0,

|ka| ≤ ba,

|kd| ≤ bd,

(31)

which is clearly feasible by simply using (28a). Since the feasible set of (31) is finite, then (31) has

at least one optimal solution.

Let (k∗a, k
∗
d) be an optimal solution of problem (31). Consequently, a lower bound for the

improvement obtained with xi,k+1 for the leader’s objective function value with an inexact follower,

and with respect to the vectors a′ and d′, is given by k∗aqa + k∗dqd. That is:

k∗aqa + k∗dqd = k∗a
εK

4(1 + ε)n
+ k∗d

εK

4(1 + ε)(m+ 1)

=
εK

4(1 + ε)

(
k∗a
n

+
k∗d

(m+ 1)

)
,

where we again apply the definitions of qa and qd.

Observe that (0, 0) is not a feasible solution for (31). Also note that k∗a and k∗d cannot be

simultaneously strictly negative. Hence, we need to consider only two cases, as outlined bellow.

First, if k∗a ≥ 0 and k∗d ≥ 0, then we have that either k∗a ≥ 1 or k∗d ≥ 1. Therefore:

k∗aqa + k∗dqd ≥
εK

4(1 + ε)
· 1

max {n,m+ 1}
. (32)

Assume now that k∗ak
∗
d < 0. Without loss of generality, we can assume that k∗a < 0, as the

arguments presented below can also be applied whenever k∗d < 0.

57

By the definitions of k∗a and k∗d, we have k∗aqa + k∗dqd > 0, which implies k∗dqd > −k∗aqa = |k∗a| qa.

Dividing both sides of the latter inequality by qd, which is strictly positive, and given that qa
qd

= m+1
n

from their definitions, we get k∗d >
m+1
n |k∗a|. Recall that (k∗a, k∗d) forms an optimal solution of (31).

Then, k∗d is the smallest integer that satisfies k∗d >
m+1
n |k∗a|, i.e:

k∗d =

⌈
m+ 1

n
|k∗a|
⌉
> 0,

and, by using the definitions of both qa and qd again, we obtain the following relation:

k∗aqa + k∗dqd =
εK

4(1 + ε)(m+ 1)

(
m+ 1

n
k∗a +

⌈
m+ 1

n
|k∗a|
⌉)

. (33)

If (m+ 1) |k∗a| is a multiple of n, then (k∗a, k
∗
d) satisfies k

∗
aqa + k∗dqd = 0 by (33), i.e., (k∗a, k

∗
d) is

not a feasible solution of (31). Consequently, we assume that (m+ 1) |k∗a| is not a multiple of n.

Therefore, there exists α ∈ Z≥0 and β ∈ {1, · · · , n− 1} such that (m+ 1) |k∗a| = αn+ β, and,

k∗aqa + k∗dqd =
εK

4(1 + ε)(m+ 1)

(
−(α+

β

n
) +

⌈
α+

β

n

⌉)
=

εK

4(1 + ε)(m+ 1)

(
−β
n
+

⌈
β

n

⌉)
≥ εK

4(1 + ε)(m+ 1)n
=: ∆,

where the second equality is obtained by using the additive property of the ceiling function, i.e.,

⌈u+ k⌉ = ⌈u⌉ + k for any u ∈ R and k ∈ Z≥0. The last inequality is derived from the fact that

the minimum absolute difference between a rational number that is not an integer and the closest

integer above it is the inverse of the numerator of the rational number. ■

Proof of Theorem 2. Fix i ≥ 0. Then, assume that K is the leader’s objective function value with

an inexact follower that is computed at the iteration i in line 5 of Algorithm 2.

From Lemma 1, if “answer” is “Yes” in line 11 of Algorithm 2 when calling Improve, then

the improving solution that is obtained by Improve always reduces the leader’s objective function

value with respect to a′ and d′ by at least:

∆ :=
εK

4(1 + ε)(m+ 1)n
.

Hence, the number of calls to Improve between two consecutive iterations i and i+ 1 is:

1

∆

(
a′

⊤
xi + d′⊤yA(xi)

)
=

1

∆

 n∑
j=1

qa

⌈
aj
qa

⌉
xij +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

i)

 (35a)

58

≤ 1

∆

 n∑
j=1

qa

(
aj
qa

+ 1

)
xij +

m∑
ℓ=1

qd

(
dℓ
qd

+ 1

)
yAℓ (x

i)

 (35b)

≤ 1

∆

 n∑
j=1

(aj + qa)x
i
j +

m∑
ℓ=1

(dℓ + qd) y
A
ℓ (x

i)

 (35c)

≤ 1

∆
(K + nqa + (m+ 1) qd) , (35d)

where (35a) comes from the definitions of the scaled vectors a′ and d′. Then, (35b) comes from the

property of the ceiling function. Also, the leader’s and the follower’s variables are all binary. Thus,

(35d) holds. We use m+1 instead of m in the third term for convenience in the derivations bellow.

Additionally, by using the definitions of qa and qd as computed in the line 6 of Algorithm 2:

nqa
∆

=
(m+ 1) qd

∆
=

Kε

4∆ (1 + ε)
= n (m+ 1) .

On the other hand, observe that:

K

∆
=

4n(m+ 1)(1 + ε)

ε
= O

(nm
ε

)
,

and therefore, using (35d), we have that:

a′⊤xi + d′⊤yA(xi)

∆
= O

(nm
ε

)
.

By the stopping criteria in the inner loop in line 10 of Algorithm 2, the leader’s objective func-

tion value with an inexact follower is divided by two between two iterations i and i + 1. Thus,

the number of iterations is bounded by O (logK0), where K0 := a⊤x0 + d⊤yA(x0) > 0; recall

Assumption A4. Therefore, the maximum number of calls to Improve can be estimated as:

O
(
1

ε
nm logK0

)
.

In the worst case, each call to Improve, which has a running-time complexity CI , is followed by a

call to A, which has a running-time complexity CA. Therefore, each call to Improve contributes

to the running-time complexity by the order of O (CI + CA), concluding the proof. ■

Proof of Theorem 3. By Theorem 2, (ε,A)-LSA terminates. Let xε,A be the solution that is returned

by the algorithm, and let x ∈ NX (x
ε,A) be an arbitrary leader’s feasible decision in its neighborhood.

59

Let K, qa and qd denote the values obtained at the last iteration if before the algorithm ends. Then:

a⊤xε,A + d⊤yA(xε,A) =
n∑

j=1

ajx
ε,A
j +

m∑
ℓ=1

dℓy
A
ℓ (x

ε,A)

≤
n∑

j=1

qa

⌈
aj
qa

⌉
xε,Aj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

ε,A)

≤
n∑

j=1

qa

⌈
aj
qa

⌉
xj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x),

where the transition from the second to the third line follows from the fact that xε,A is a weak local

optimal solution with respect to the scaled vectors a′ and d′.

Notably, the algorithm stops exclusively after finding a weak local optimal solution with respect

to these scaled vectors; see line 15 of Algorithm 2. Then, it follows that:

a⊤xε,A + d⊤yA(xε,A) ≤
n∑

j=1

qa

(
aj
qa

+ 1

)
xj +

m∑
ℓ=1

qd

(
dℓ
qd

+ 1

)
yAℓ (x)

= a⊤x+ d⊤yA(x) + nqa +mqd

≤ a⊤x+ d⊤yA(x) + nqa + (m+ 1)qd,

where we simply exploit the properties of the ceiling function.

Furthermore, the subsequent inequality results directly from the stopping criteria that is used

within the inner loop in line 10 of Algorithm 2:

K

2
≤ a⊤xε,A + d⊤yA(xε,A) ≤ a⊤x+ d⊤yA(x) + nqa + (m+ 1)qd,

which we exploit to obtain:

a⊤xε,A + d⊤yA(xε,A)− a⊤x− d⊤yA(x)

a⊤x+ d⊤yA(x)
≤ nqa + (m+ 1)qd

a⊤x+ d⊤yA(x)

≤ nqa + (m+ 1)qd
K
2 − nqa − (m+ 1)qd

= ε,

which then implies that xε,A is weakly ε-local optimal; recall Definition 4. ■

Proof of Proposition 2 . Fix i ≥ 0. We show that if the condition (11) is satisfied, then each

improving step within the inner loop with respect to the scaled vectors a′ and d′ corresponds to

an improvement in terms of the original leader’s objective function with an inexact follower.

60

Let xi,k denote a leader’s feasible solution obtained within the inner loop at line 10 of Algo-

rithm 2. Moreover, assume there exists an improving solution xi,k+1 ∈ NX (x
i,k) in term of the

leader’s objective function with an inexact follower and with scaled vectors a′ and d′, i.e., that

“answer” obtained by Improve is “Yes.”

Then, the following sequence of inequalities and equalities holds:

∆ ≤
n∑

j=1

qa

⌈
aj
qa

⌉
xi,kj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

i,k)−
n∑

j=1

qa

⌈
aj
qa

⌉
xi,k+1
j −

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

i,k+1)

=
n∑

j=1

qa

⌈
aj
qa

⌉(
xi,kj − x

i,k+1
j

)
+

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉(
yAℓ (x

i,k)− yAℓ (xi,k+1)
)

=

n∑
j=1

pjqa

(
xi,kj − x

i,k+1
j

)
+

m∑
ℓ=1

sℓqd

(
yAℓ (x

i,k)− yAℓ (xi,k+1)
)

= a⊤xi,k + d⊤yA(xi,k)− a⊤xi,k+1 − d⊤yA(xi,k+1)

+
n∑

j=1

αj

(
xi,kj − x

i,k+1
j

)
+

m∑
ℓ=1

βℓ

(
yAℓ (x

i,k)− yAℓ (xi,k+1)
)
,

where the first inequality holds since xi,k+1 is an improving solution, which reduces the leader’s ob-

jective function with inexact follower and scaled vectors a′ and d′ by at least ∆; recall Lemma 1. The

subsequent inequality are obtained by the definitions of α and β from the discussion in Section 5.2

above Proposition 2. That is, for each j ∈ [n], pj ∈ Z≥0 and αj ∈ [0, qa) are defined such that aj =

pjqa−αj . Similarly, for each ℓ ∈ [m], sℓ ∈ Z≥0 and βℓ ∈ [0, pd) are defined such that dℓ = sℓqd−βℓ.

As a consequence, a necessary condition for xi,k+1 to be an improving solution in terms of the

leader’s objective function with an inexact follower is given by:

0 < ∆−
n∑

j=1

αj

(
xi,kj − x

i,k+1
j

)
−

m∑
ℓ=1

βℓ

(
yAℓ (x

i,k)− yAℓ (xi,k+1)
)
,

which holds if the following inequality is satisfied:

∆∗
x

n∑
j=1

αj +∆A
y

m∑
ℓ=1

βℓ < ∆.

As a consequence, if (11) holds, then every improving step in term of the scaled leader’s objec-

tive function leads to an improving step in term of the original leader’s objective function. That

is, the algorithm returns a weak local optimal solution to [B-BP]. ■

61

Proof of Theorem 4. We show that any improvement in the leader’s objective function in terms

of the scaled vectors a′ and d′ is also an improvement in terms of the original leader’s objective

function and vice versa.

Fix i ≥ 0. Let xi,k denote a leader’s feasible decision obtained within the inner loop at line 10 of

Algorithm 2. Assume there exists an improving solution xi,k+1 ∈ NX (x
i,k) in terms of the leader’s

objective function, with an inexact follower and with scaled vectors a′ and d′. In other words, the

response obtained by Improve is “Yes.” Then, the following holds:

0 <

n∑
j=1

qa

⌈
aj
qa

⌉
xi,kj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
y∗ℓ (x

i,k)−
n∑

j=1

qa

⌈
aj
qa

⌉
xi,k+1
j −

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
y∗ℓ (x

i,k+1)

=

m∑
ℓ=1

qd

⌈
α

qd

⌉
y∗ℓ (x

i,k)−
m∑
ℓ=1

qd

⌈
α

qd

⌉
y∗ℓ (x

i,k+1),

where the first strict inequality comes from the definition of an improving solution, and the second

equality follows from the assumption that a = 0 and d = α1. Consequently, we have:

0 <
m∑
ℓ=1

y∗ℓ (x
i,k)−

m∑
ℓ=1

y∗ℓ (x
i,k+1), (39)

which holds since qd

⌈
α
qd

⌉
does not depend on ℓ. Multiplying both sides of (39) by α, we see

that xi,k+1 is an improving solution in terms of the original leader’s objective function value.

Additionally, the converse statement is true as well. That is, starting from an improving solution

in terms of the original leader’s objective function, one can show that it is an improving solution

with respect to the leader’s objective function with scaled vectors a′ and d′.

Moreover, the outlined proof is independent of the values that are taken by qa and qd. Therefore,

the relation holds at each iteration i, which concludes the proof. ■

D.3 Sharpness of (ε,A)-LSA

In this section, we construct an instance of the knapsack interdiction problem where the bound

ε > 0, derived for the solution obtained by (ε,A)-LSA in Theorem 3, is asymptotically achieved

whenever the follower’s problem is solved exactly. The standard linear 0-1 knapsack problem in-

volves selecting a subset of items to maximize the total value. In contrast, the knapsack interdiction

problem introduces a leader, who aims to interdict certain items, forcing the follower to solve the

knapsack problem with the remaining items. For more details, we refer to Caprara et al. (2016).

Thus, the knapsack interdiction problem can be formulated as the following bilevel program:

62

min
x,y∗(x)

c⊤y∗(x)

s.t. x ∈ X , y∗(x) ∈ argmax
{
c⊤y : y ∈ Y(x)

}
,

where the leader’s feasible set is defined as X :=
{
x ∈ {0, 1}n : 1⊤x ≤ h

}
, and h ∈ Z+. Moreover,

x ∈ X indicates the decision made by the leader, i.e., xi = 1 if and only if item i is interdicted.

Given x ∈ X , we define Y(x) :=
{
y ∈ {0, 1}n : 1⊤y ≤ f , y ≤ 1− x

}
. Also, y∗(x) is the follower’s

rational response given x, i.e., yi(x)
∗ = 1 if and only if the follower selects item i.

In the following, we assume that h = 1 and f = 1. Next, we define ε > 0 by:

ε :=
4n

ξ + ψ − 1
3

and θ :=
ε

12n(1 + ε)
,

where ξ is a strictly positive integer and 2
3 < ψ < 1.

We define c ∈ Rn
+ by ci = θ, for any i ∈ {1, . . . , n− 2}, cn−1 = 1 and cn = 1 − θ. Also, let

ei ∈ {0, 1}n be the vector, where the only non-zero element is equal to 1 in the i-th component.

We consider the 2-flip neighborhood, denoted as N
(2)
X . We call (ε,A)-LSA with initial feasible

solution x0 = en. It follows that y
∗(x0) = en−1, and K = c⊤y∗(x0) = 1. Hence, qd = Kε

4n(1+ε) , and:

ci
qd

=


θ (4n+ ξ + ψ − 1/3) if i ∈ {1, . . . , n− 2} ,

4n+ ξ + ψ − 1/3 if i = n− 1,

4n+ ξ + ψ − 1/3− θ (4n+ ξ + ψ − 1/3) if i = n.

Next, observe that θ (4n+ ξ + ψ − 1/3) = 1/3. Since ξ is an integer, if we apply the ceiling

function to c
qd
, then we obtain the following scaled vector c′ = qd

⌈
c
qd

⌉
:

⌈
ci
qd

⌉
=


1 if i ∈ {1, . . . , n− 2} ,

4n+ ξ + 1 if i = n− 1,

4n+ ξ + 1 if i = n.

We enter the inner loop at line 10 of Algorithm 2 with starting feasible solution x0 and call

Improve with the scaled vector c′. Then, the 2-flip neighborhood of x0 is given by:

N
(2)
X (x0) :=

{
0
}⋃{

ei : i ∈ {1, . . . , n}
}
.

63

The answer returned by Improve is “No” since there are no improving solutions in the neighbor-

hood of x0 (in terms of the scaled vectors). Hence, the algorithm terminates and returns x0 = en.

In fact, the only solution in the neighborhood x0 that has a better leader’s objective function

value is x1 = en−1. Indeed, observe that y∗(x1) = en. Consequently, the following holds:

c⊤y∗(x0)− c⊤y∗ (x1
)

c⊤y∗ (x1)
=

1− (1− θ)
1− θ

,

= ε
1

12n+ (12n− 1) ε
= O(ε),

which implies that the worst-case bound ε obtained by (ε,A)-LSA in Theorem 3 is in the order of

ε (asymptotically), assuming 0 < ε < 1. Thus, (ε,A)-LSA can be considered “sharp” in this sense.

D.4 Proofs and further discussion for Section 5.3

We assume that at least one of the follower’s decision variables is continuous, i.e., m2 > 0. Also,

without loss of generality, we assume that ∥d∥1 > 0. Indeed, if d = 0, then the leader’s problem

[BP] is reduced to a single-level combinatorial optimization problem.

We mirror the discussion in Section 5.2 while taking into account the differences arising with

the relaxation of the integrality restriction at the lower level. Accordingly, we present the following:

• We provide an upper bound for the maximum number of calls to Improve between two

iterations i and i+ 1 in (ε,A)-LSA; see Lemma 4. We leverage this observation to derive the

running-time complexity of the weak approximate local search; see Proposition 3.

• As (ε,A)-LSA is guaranteed to terminate, we show that the leader’s feasible decision xε,A is

a weak ε-local optimal solution; see Proposition 6.

• We provide a sufficient condition for xε,A to be weakly local optimal; see Proposition 7.

Lemma 4. Let ε > 0, NX be a neighborhood function, and A be an algorithm that returns a feasible

solution to the follower’s problem (1c) for any leader’s feasible decision. Assume that qa, qd, K,

γ, a′ and d′ are given as in Algorithm 2 at iteration i ∈ Z≥0. Then, the maximum number of

calls to Improve between two subsequent iterations i and i+ 1, denoted by τ (m, ε), is of order of

τ (m, ε) = O
(
m
ε

)
, i.e., the maximum number of calls to Improve is polynomial in m and 1/ε.

Proof. Recall that at the iteration i, the leader’s objective function value with an inexact follower

and scaled vectors is given by a′⊤xi+d′⊤yA(xi), see line 5 of Algorithm 2. At each call of Improve,

if “answer” is “Yes”, then the improving solution, which is returned by the sub-procedure reduces

the leader’s objective function value with an inexact follower and with scaled vectors by at least γ.

64

Therefore, the maximum number of calls to Improve between iterations i and i+1 is given by:

τ :=
a′⊤xi + d′⊤yA(xi)

γ
,

where a′ and d′ are the scaled vectors obtained at line 7 of Algorithm 2. An upper bound for τ

can be derived as follows:

τ =
a′⊤xi + d′⊤yA(xi)

γ
(42a)

=

∑n
j=1 qa

⌈
aj
qa

⌉
xij +

∑m
ℓ=1 qd

⌈
dℓ
qd

⌉
y∗ℓ (x

i)

γ
(42b)

≤ a⊤xi + d⊤yA(xi) + nqa + qd (m+ 1)U

γ
(42c)

=

(
K +

Kε

4 (1 + ε)
+

Kε

4 (1 + ε)

)
mqd +

∑m
ℓ=1 dℓ

Uq2d
∑m

ℓ=1

⌈
dℓ
qd

⌉ , (42d)

where (42a) comes from the definition of the scaled vectors a′ and d′. Additionally, (42c) is obtained

by the property of the ceiling function. Specifically,

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

i) ≤
m∑
ℓ=1

qd

(
dℓ
qd

+ 1

)
yAℓ (x

i) ≤ d⊤yA(xi) +

m∑
ℓ=1

qdy
A
ℓ (x

i).

Moreover, both the leader’s and the follower’s decision variables are bounded by 1 and U , respec-

tively; recall Assumption A2. Therefore,

m∑
ℓ=1

qdy
A
ℓ (x

i) ≤ qdmU ≤ qd (m+ 1)U,

and the other terms in (42c) can be derived in a similar manner. Finally, (42d) is obtained by the

definitions of K, qa, qd, and γ; see lines 6 and 8 of Algorithm 2.

We once again use the property of the ceiling function to obtain:

m∑
ℓ=1

⌈
dℓ
qd

⌉
≥ min

{
m∑
ℓ=1

dℓ
qd
,

m∑
ℓ=1

1

}
,

which is then exploited, along with (42), to derive the following sequence of inequalities:

τ ≤ K

Uqd

(
2 + 3ε

2 (1 + ε)

)
mqd +

∑m
ℓ=1 dℓ

qd
∑m

ℓ=1

⌈
dℓ
qd

⌉

65

≤ K

Uqd

(
2 + 3ε

2 (1 + ε)

)
(1 + 1)

≤ K

Uqd

(
2 + 3ε

1 + ε

)
≤ 4U (m+ 1) (1 + ε)K

KUε

(
2 + 3ε

1 + ε

)
≤ 4 (m+ 1) (2 + 3ε)

ε
,

where the passage from the third line to the fourth one is possible by using the definition of qd; see

line 6 of Algorithm 2. Hence, the maximum number of calls only depends on m and ε. Finally, we

have that τ (m, ε) = O
(
m
ε

)
, which concludes the proof. ■

Proof of Proposition 3. By Lemma 4, the maximum number of calls to Improve (and hence , calls

to A) between iterations i and i + 1 is given by τ (m, ε). Moreover, K̃0 is an upper-bound of the

optimal leader’s objective value with an inexact follower.

Additionally, between each iteration i and i+1, the leader’s objective function value is divided

by at least 2 by the stopping criteria of the loop of line 10 of Algorithm 2. Therefore, the maximum

number of iteration is in the order of O
(
log K̃0

)
, and the total number of calls of Improve and A

is in the order of O
(
τ (m, ε) log K̃0

)
. Consequently, (ε,A)-LSA terminates within a finite number

of improving steps. In fact, the number of the improving steps is polynomial. ■

Since (ε,A)-LSA is guaranteed to terminate, even when the follower’s response contains contin-

uous variables, we show that the solution obtained is, in fact, weakly ε-local optimal. The result

bellow is analogous to Theorem 3 in Section 5.2.

Proposition 6. Let ε > 0, NX be a neighborhood function, and A be an algorithm that returns a

feasible solution to the follower’s problem (1c) for any leader’s feasible decision. Then, (ε,A)-LSA is

guaranteed to return a weak ε-local optimal solution of [B-BP] with respect to NX and A.

Proof. Let xε,A be the leader’s feasible decision obtained by calling (ε,A)-LSA, and let x ∈ NX (x
ε,A)

be a leader’s feasible decision in its neighborhood. Let qa, qd and γ denote the values obtained before

(ε,A)-LSA terminates in the last iteration if ; recall lines 6 and 8 from Algorithm 2. Then:

a⊤xε,A + d⊤yA(xε,A) =
n∑

j=1

ajx
ε,A
j +

m∑
ℓ=1

dℓy
A
ℓ (x

ε)

≤
n∑

j=1

qa

⌈
aj
qa

⌉
xε,Aj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x

ε,A)

66

≤
n∑

j=1

qa

⌈
aj
qa

⌉
xj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉
yAℓ (x) + γ,

where the first inequality comes from the property of the ceiling function, and the second one comes

from the local optimality property of xε,A with respect to the scaled vectors a′ and d′. Indeed, recall

that (ε,A)-LSA stops whenever “answer,” which is returned by Improve, is “No.” Consequently,

the gap between xε,A and x with respect to the scaled vectors satisfies ∆A(xε,A,x,a′,d′) ≤ γ.

Hence, using the definition of γ and the property of the ceiling function, we obtain:

a⊤xε,A + d⊤yA(xε,A) ≤
n∑

j=1

qa

⌈
aj
qa

⌉
xj +

m∑
ℓ=1

qd

⌈
dℓ
qd

⌉(
yAℓ (x) + U

(
m+

∑m
ℓ=1 dℓ
qd

)−1
)

(45a)

≤
n∑

j=1

qa

(
aj
qa

+ 1

)
xj +

m∑
ℓ=1

qd

(
dℓ
qd

+ 1

)(
yAℓ (x) + U

(
m+

∑m
ℓ=1 dℓ
qd

)−1
)

(45b)

≤ a⊤x+ d⊤yA(x) + nqa +mUqd + U

∑m
ℓ=1 dℓ +mqd

m+
∑m

ℓ=1 dℓ
qd

(45c)

≤ a⊤x+ d⊤yA(x) + nqa + (m+ 1)Uqd, (45d)

where (45a) and (45b) follow by the definition of γ and by the properties of the ceiling function,

respectively; recall line 8 of Algorithm 2.

In addition, according to the stopping criteria of the loop in line 10 of Algorithm 2, together

with the previous inequality, we have that:

K

2
≤ a⊤xε,A + d⊤yA(xε) ≤ a⊤x+ d⊤yA(x) + nqa + (m+ 1)Uqd.

Therefore, the following inequalities are satisfied:

a⊤xε,A + d⊤yA(xε,A)− a⊤x− d⊤yA(x)

a⊤x+ d⊤yA(x)
≤ nqa + (m+ 1)Uqd

a⊤x+ d⊤yA(x)

≤ nqa + (m+ 1)Uqd
K
2 − nqa − (m+ 1)Uqd

= ε,

where the last equality follows by the definition of qa and qd. Finally, we can conclude that xε,A is

weakly ε-local optimal with respect to NX and A. ■

If the follower’s decision variables are all continuous, then the follower’s problem (1c) is a linear

program and can be solved in polynomial time. Therefore:

67

Corollary 3. If the neighborhood can be efficiently searched, i.e., if Improve is a polynomial-

time algorithm, then (ε,A)-LSA is a polynomial-time algorithm that finds an ε-local optimal solu-

tion to [C-BP] .

Furthermore, if the neighborhood always remains of polynomial size, similarly to the k-flip

neighborhood, then it can be efficiently explored by exhaustively enumerating all of its elements.

In that case, the assumption of the previous corollary holds.

On the other hand, if the follower’s variables can also be binary and A is a δ-approximation algo-

rithm, then we can show that the solution obtained by (ε,A)-LSA is an approximate local optimal so-

lution. Indeed, (ε,A)-LSA is guaranteed to return a weak ε-local optimal solution by Proposition 6.

Then, recall our discussion from Section 4 on the relation between weak (approximate) and approxi-

mate local optimality whenever a δ-approximation algorithm is used to solve the follower’s problem.

Corollary 4. Let ε > 0, NX be a neighborhood function, A be a polynomial-time algorithm that

returns a δ-approximate solution to the lower-level problem (1c) for any leader’s feasible decision,

and z > 0 be a strictly positive lower bound for the leader’s objective function value. If Improve is

a polynomial-time algorithm, then (ε,A)-LSA is a polynomial-time algorithm that finds a Π(ε, γ1δ+

γ2, z)-local optimal solution with respect to NX , for some γ1, γ2 ≥ 0, and Π as given by (10).

In Proposition 2, we establish a sufficient condition under which (ε,A)-LSA is guaranteed to

return a weak local optimal solution. This condition is based on a better comprehension of the

scaling step within Algorithm 2; recall our discussion before Proposition 2. A similar condition can

be derived whenever the follower’s decision variables are also continuous. We assume that α, β,∆∗
x

and ∆A
y are given as in the discussion preceding Proposition 2. Then:

Proposition 7. Let ε > 0, NX be a neighborhood function, A be an algorithm that returns a

feasible solution to the follower’s problem (1c) for any leader’s feasible decision. Assume that K,

γ, qa and qd are the parameters obtained at the last iteration if in Algorithm 2 before it terminates.

Let xε,A be the solution obtained by (ε,A)-LSA. If the following condition holds:

∆∗
x

n∑
j=1

αj +∆A
y

m∑
ℓ=1

βℓ ≤ γ, (47)

then xε,A is weakly local optimal with respect to NX and A.

Proof of Proposition 7. The proof is essentially the same as the one for Proposition 2. The only

distinction is that we use γ as the minimum improving gap. ■

68

As a final comment, if the follower’s variables are all continuous, then the lower-level problem

is an LP, which can be efficiently solved exactly. Hence, if, first, the follower’s decision are all

continuous, and, second, the neighborhood can be searched efficiently, then Proposition 7 is a

sufficient condition under which (ε,A)-LSA returns a local optimal solution in polynomial time.

D.5 Extensions of our approach

In this section, we discuss several meaningful extensions of our approach, initially omitted to

maintain clarity. These extensions are particularly valuable from a practical standpoint, as they

address considerations that are important to effectively apply our approach. Specifically:

Initial feasible solution. An initial leader’s feasible decision, denoted as x0, is required as

an input for (ε,A)-LSA. This initial decision can be obtained by solving the single-level relaxation

of [BP], which relaxes the leader’s optimization problem by dropping the follower’s optimality

condition (Moore and Bard 1990). This relaxation is formulated as:

zSLR := min
x,y

{
a⊤x+ d⊤y : x ∈ X , y ∈ Y(x)

}
.

A feasible solution to the single-level relaxation problem can serve as a starting point for (ε,A)-

LSA. Such feasible decisions can be obtained through classical heuristics (Fischetti et al. 2005).

General integrality at the upper level. Next, we consider another extension, where the

leader’s decision variables are generalized to integer values, i.e., x ∈ {1, . . . , u}, for some integer

u ∈ Z>0. If u is known in advance, then the leader’s decisions can be replaced by binary decisions

using a standard binary expansion technique.

Alternatively, one could modify the definitions introduced in Section 3 and generalize them to

accommodate the leader’s general integer decisions. In this case, a minor adjustment is required

in Algorithm 2. Specifically, in line 6, the scaling factor qa applied to vector a is replaced by

qa = Kε
4nu(1+ε) . The results from Section 5.2 then follow.

Exact neighborhood. In single-level combinatorial optimization, a neighborhood function is

defined as exact if any local optimal solution with respect to that neighborhood is also globally

optimal (Orlin et al. 2004). For example, any local optimal solution to the minimum spanning tree

problem, with respect to the 2-flip neighborhood function is guaranteed to be globally optimal.

It has also been established that an ε-local optimal solution, defined with respect to an exact

neighborhood, does not necessarily constitute an ε-approximate global solution. Nevertheless, the

69

ε-local search algorithm designed for single-level combinatorial optimization is guaranteed to return

an approximate (global) solution whenever the neighborhood function is exact (Orlin et al. 2004).

An analogous result can be shown to hold for the (ε,A)-LSA when the follower’s problem is

solved to optimality; for brevity, we omit the formal statement and proof. In contrast, the question

of whether these property persists when the follower’s problem is solved only approximately remains

open and presents an interesting avenue for future research.

70

E Additional illustrations and discussions for Section 6

In this section, we present a complete analysis of our computational experiments, which were

previously omitted for conciseness. In Section E.1, we include the additional figures for the knapsack

interdiction problem. Then, in Section E.2, we provide the supplementary tables for the maximum

weighted clique interdiction problem.

E.1 Knapsack interdiction problem: continuous lower level (i.e., Y = Yc)

Below are the complete figures from Section 6.2.1 whenever the follower’s decision variables are

all continuous. Specifically, Figure 8 shows the results for the 2-flip neighborhood function, while

Figure 9 presents those for the 3-flip neighborhood function.

0 40 80 120 160

0

5

10

15

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(a) Runtime

0 40 80 120 160

0
20
40
60
80

100
120

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(b) Number of improving steps

0 40 80 120 160

0

1

2

3

4

5
×104

n
C
a
l
l
A

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(c) Number of calls to A

0 40 80 120 160

0

5

10

15

n

B
e
t
t
e
r
S
o
l
(%

)

ε = 0.1 ε = 0.2

ε = 0.25

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

0 40 80 120 160

0

2

4

6

×10−3

n

M
a
x
G
a
p

ε = 0.1 ε = 0.2

ε = 0.25

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

0 40 80 120 160

0.6

0.7

0.8

0.9

1

n

Im
p
R
a
t
io

ε = 0.1 ε = 0.2

ε = 0.25

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 8: Continuous follower - exact follower (δ = 0) - 2-flip neighborhood (k = 2): comparison of the efficiency
and the performance for the knapsack interdiction problem; see Section 6.2.1. Recall that ε = δ = 0 corresponds to LSA, while
ε > 0 corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating Avg ± MAD.

71

0 40 80 120 160

0

2

4

6

×102

n

T
im

e
(s
ec
)

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(a) Runtime

0 40 80 120 160

0
20
40
60
80

100
120

n

Im
p
S
t
e
p
s

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(b) Number of improving steps

0 40 80 120 160

0

5

10

15

×104

n

C
a
l
l
A

ε = 0 ε = 0.1

ε = 0.2 ε = 0.25

(c) Number of calls to A

0 40 80 120 160

0

2

4

6

8

n

B
et
te
rS
o
l
(%

)

ε = 0.1 ε = 0.2

ε = 0.25

(d) Percentage of improving solu-
tion compare to the size of the
neighborhood

0 40 80 120 160

0

2

4

6

×10−3

n

M
a
x
G
a
p

ε = 0.1 ε = 0.2

ε = 0.25

(e) Maximum gap between the so-
lution obtained and improving so-
lution in its neighborhood

0 40 80 120 160

0.6

0.8

1

1.2

n

Im
p
R
a
t
io

ε = 0.1 ε = 0.2

ε = 0.25

(f) Ratio of improvement of the
(ε,A)-LSA compare to the improve-
ment of LSA

Figure 9: Continuous follower - exact follower (δ = 0) - 3-flip neighborhood (k = 3): comparison of the efficiency
and the performance for the knapsack interdiction problem; see Section 6.2.1. Recall that ε = δ = 0 corresponds to LSA, while
ε > 0 corresponds to (ε,A)-LSA. Each line shows the average (Avg), with the shaded region indicating Avg ± MAD.

72

E.2 Maximum weighted clique interdiction problem

Below are the missing tables from Section 6.3. Specifically, Table 5 shows the results for the

weak local search, where the lower-level problem is solved approximately, while Table 6 presents

the results for (ε,A)-LSA where the follower’s problem is solved exactly.

Time (sec) ImpSteps CallA MaxGap ImpRatio

n d Avg MAD Avg MAD Avg MAD Avg MAD Avg MAD

40 0.5 23.6 7.7 7.2 1.8 340 104 8.3 · 10−3 9.5 · 10−3 0.88 1.9 · 10−1

40 0.7 17.2 7.6 9.5 2.5 415 145 1.9 · 10−2 1.7 · 10−2 0.86 1.5 · 10−1

40 0.9 5.8 1.2 11.0 2.3 399 87 2 · 10−2 1.4 · 10−2 0.89 8.4 · 10−2

50 0.5 94.0 32.1 9.3 2.3 637 214 7.9 · 10−3 1.1 · 10−2 0.96 8.8 · 10−2

50 0.7 66.9 23.6 12.3 2.6 678 213 8.1 · 10−3 9.9 · 10−3 0.92 1.3 · 10−1

50 0.9 13.9 3.8 14.1 3.0 719 204 2.3 · 10−2 1.3 · 10−2 0.88 9.5 · 10−2

60 0.5 158.7 40.7 10.1 2.2 766 205 9.4 · 10−3 9 · 10−3 0.90 1.5 · 10−1

60 0.7 168.5 53.7 13.3 2.2 944 297 1.2 · 10−2 1.4 · 10−2 0.91 8.9 · 10−2

60 0.9 32.2 8.8 18.9 3.6 1,083 277 2.6 · 10−2 1.2 · 10−2 0.84 7.3 · 10−2

Table 5: (ε,A)-LSA - inexact follower (δ = 0.1) - 2-flip neighborhood function (k = 2): comparison of
the efficiency and performance metric for (ε,A)-LSA, where (δ, ε) = (0.1, 0), applied to the maximum weighted clique
interdiction problem; recall (9) in Section 6.3. Moreover, the leader interdicts 10% of the vertices, i.e., h = 0.1n.

Time (sec) ImpSteps CallA MaxGap ImpRatio

n d Avg MAD Avg MAD Avg MAD Avg MAD Avg MAD

40 0.5 30.9 7.9 7.4 1.6 366 89 6.1 · 10−6 1.2 · 10−5 1.00 1.5 · 10−2

40 0.7 25.6 7.2 9.2 2.0 404 96 4.7 · 10−5 8.4 · 10−5 0.99 1.2 · 10−2

40 0.9 7.7 1.9 12.2 2.4 473 110 3.7 · 10−5 7 · 10−5 1.01 1.3 · 10−2

50 0.5 98.7 30.5 9.4 1.9 648 188 5.6 · 10−5 1 · 10−4 0.99 1.5 · 10−2

50 0.7 82.1 22.5 12.0 2.1 714 197 3 · 10−5 5.7 · 10−5 0.98 5.1 · 10−2

50 0.9 22.3 5.5 14.6 2.8 767 200 2 · 10−5 3.8 · 10−5 1.00 8.4 · 10−3

60 0.5 181.2 45.6 10.7 2.3 864 225 6.5 · 10−5 1.1 · 10−4 0.99 2.9 · 10−2

60 0.7 167.3 44.7 12.7 2.5 903 234 7.9 · 10−5 1.3 · 10−4 0.98 3.8 · 10−2

60 0.9 73.3 23.7 18.0 3.3 1,203 352 2.7 · 10−5 5 · 10−5 1.00 9 · 10−3

Table 6: (ε,A)-LSA - exact follower (δ = 0) - 2-flip neighborhood function (k = 2): comparison of the
efficiency and performance metric for (ε,A)-LSA, where (δ, ε) = (0, 0.1), applied to the maximum weighted clique
interdiction problem; recall (9) in Section 6.3. Moreover, the leader interdicts 10% of the vertices, i.e., h = 0.1n.

73

E.3 Additional computational experiments on non-interdiction instances

We extend our computational experiments on some non-interdiction instances from the library

compiled by Thürauf et al. (2024) that are indicated by general-bilevel. We select instances, which

are classified as hard, with n,m < 300, binary variables at both levels and no coupling constraints,

resulting in 17 instances. For each, we solve the single-level relaxation to obtain a leader’s fea-

sible decision and discard any instance where this solution is already locally optimal, leaving 12

instances (their key characteristics are summarized in Table 7). If an instance does not satisfy our

assumptions (notably AssumptionA4), then we apply the transformation described in Appendix A.

Instance n m q p

cov1075-0-100 60 60 0 637
glass-sc-0-100 107 107 0 6119
iis-100-0-cov-0-100 50 50 0 3831
iis-bupa-cov-0-100 173 172 0 4803
lseu-0.500000 45 44 0 28
lseu-0.900000 9 80 0 28
mad-0-100 110 110 0 51
mas74-0-100 76 75 0 13
p0201-0.500000 101 100 0 133
p0282-0.500000 141 141 0 241
p0282-0.900000 29 253 0 241
p0548-0.500000 274 274 0 176

Table 7: Summary of the instance sizes used in our additional computational experiments. Columns n and m
denote the numbers of the leader’s and follower’s decision variables, respectively. Columns q and p correspond to the
numbers of constraints at the upper- and lower-level problem, respectively. All instances are binary, do not have any
coupling constraints, and are classified as hard by Thürauf et al. (2024).

We then compare (ε,A)-LSA to the standard local search algorithm. First, we solve the single-

level relaxation to obtain a leader’s feasible decision, which serves as the initial solution for both

approaches. Our computations are restricted to the 2-flip neighborhood function. As a side ob-

servation, none of the instances in Table 7 contain constraints at the upper level, making them

particularly challenging for local search methods due to the resulting large neighborhood size.

For (ε,A)-LSA, we set ε = 0.25 and solve the lower-level problem approximately (using A,

i.e., the same solver and computational setup as in Section 6, except that we allow Gurobi to use

32 threads) with a pre-specified gap δ = 0.25 (recall Algorithm 2). The standard local search

corresponds to the parameters ε = δ = 0. For each method, we report the runtime, number of

improving steps, number of calls to A and the improvement ratio as initially defined in Section 6.

74

Time (sec) ImpSteps CallA ImpRatio

Instance 0 0.25 relaxation 0 0.25 0 0.25 0 0.25

cov1075-0-100 40.06 39.40 1.38 1 1 1,289 1,289 1.41 1.41
glass-sc-0-100 342.01 352.19 285.82 3 3 6,073 6,073 2.73 2.73
iis-100-0-cov-0-100 59.30 56.18 83.24 7 7 1,294 1,294 11.29 11.29
iis-bupa-cov-0-100 844.14 810.32 223.00 5 5 15,617 15,617 2.81 2.81
lseu-0.500000 10.10 7.87 0.26 7 5 821 715 16.86 11.09
lseu-0.900000 1.50 0.31 0.25 1 0 51 45 2.72 0.00
mad-0-100 98.53 54.14 0.42 5 3 4,953 6,414 30.00 20.00
mas74-0-100 20.61 20.32 0.02 17 17 3,507 3,507 0.02 0.02
p0201-0.500000 98.60 92.81 0.15 1 2 11 14 0.42 0.42
p0282-0.500000 192.34 536.07 0.05 1 7 2,209 5,173 0.10 0.59
p0282-0.900000 4.55 4.60 0.08 10 10 523 523 15.11 15.11
p0548-0.500000 12,913.21 927.48 0.12 16 2 53,099 5,799 1.41 1.11

Table 8: LSA and (ε,A)-LSA - 2-flip neighborhood function (k = 2): comparison of efficiency and performance
metrics for both standard local search, indicated by column 0, and (ε,A)-LSA with (δ, ε) = (0.25, 0.25), indicated by
column 0.25, on the instances described in Table 7. Runtime for solving the single-level relaxation is also reported.

We observe from Table 8 that the results are relatively consistent with those in Section 6.

The main takeaway is that, for most instances, using (ε,A)-LSA reduces runtime while preserving

solution quality. However, there are two notable exceptions.

The first exception is glass-sc-0-100, where the number of improving steps and the number of

calls to A for both the standard local search and (ε,A)-LSA are identical. We attribute this outcome

to the fact that solving the follower’s problem is relatively easy in this instance; hence, the solver

finds the optimal solution almost immediately and is not slowed down by a nonzero optimality

gap. The second exception is the instance p0282-0.500000, where the runtime for (ε,A)-LSA is

higher because the algorithm follows a different improvement path, as indicated by the increased

number of ImpSteps and CallA. Notably, this increase in runtime is accompanied by a higher

improvement ratio (see the ImpRatio column).

75

References

Applegate, D., Hinder, O., Lu, H., and Lubin, M. (2023). “Faster first-order primal-dual methods

for linear programming using restarts and sharpness”. In: Mathematical Programming 201.1,

pp. 133–184.

Blair, C. E. and Jeroslow, R. G. (1977). “The value function of a mixed integer program: I”. In:

Discrete Mathematics 19.2, pp. 121–138.

Caprara, A., Carvalho, M., Lodi, A., and Woeginger, G. J. (2016). “Bilevel knapsack with inter-

diction constraints”. In: INFORMS Journal on Computing 28.2, pp. 319–333.

Erdos, P., Rényi, A., et al. (1960). “On the evolution of random graphs”. In: Publ. math. inst. hung.

acad. sci 5.1, pp. 17–60.

Fischetti, M., Glover, F., and Lodi, A. (2005). “The feasibility pump”. In: Mathematical Program-

ming 104, pp. 91–104.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability. Vol. 174. USA: Freeman

San Francisco.

Glover, F. (1975). “Improved linear integer programming formulations of nonlinear integer prob-

lems”. In: Management Science 22.4, pp. 455–460.

Gurobi (2024). Gurobi Optimization, LLC. https://www.gurobi.com. Accessed: 2024-07-26.

Kleinert, T., Labbé, M., Ljubić, I., and Schmidt, M. (2021). “A survey on mixed-integer program-

ming techniques in bilevel optimization”. In: EURO Journal on Computational Optimization 9,

p. 100007.

Mangasarian, O. L. and Shiau, T.-H. (1987). “Lipschitz continuity of solutions of linear inequalities,

programs and complementarity problems”. In: SIAM Journal on Control and Optimization 25.3,

pp. 583–595.

McCormick, G. P. (1976). “Computability of global solutions to factorable nonconvex programs:

Part I—Convex underestimating problems”. In: Mathematical Programming 10.1, pp. 147–175.

Moore, J. T. and Bard, J. F. (1990). “The mixed integer linear bilevel programming problem”. In:

Operations Research 38.5, pp. 911–921.

Orlin, J. B., Punnen, A. P., and Schulz, A. S. (2004). “Approximate local search in combinatorial

optimization”. In: SIAM Journal on Computing 33.5, pp. 1201–1214.

Papp, D. (2016). “On the complexity of local search in unconstrained quadratic binary optimiza-

tion”. In: SIAM Journal on Optimization 26.2, pp. 1257–1261.

76

https://www.gurobi.com

Tavaslıoğlu, O., Prokopyev, O. A., and Schaefer, A. J. (2019). “Solving stochastic and bilevel mixed-

integer programs via a generalized value function”. In: Operations Research 67.6, pp. 1659–1677.

Thürauf, J., Kleinert, T., Ljubić, I., Ralphs, T., and Schmidt, M. (2024). BOBILib: Bilevel Opti-

mization (Benchmark) Instance Library. url: https://optimization-online.org/?p=27063.

Vavasis, S. A. (1993). “Polynomial time weak approximation algorithms for quadratic program-

ming”. In: Complexity in Numerical Optimization. World Scientific, pp. 490–500.

Vazirani, V. V. (2001). Approximation algorithms. Springer Berlin, Heidelberg.

Vicente, L., Savard, G., and Judice, J. (1996). “Discrete linear bilevel programming problem”. In:

Journal of Optimization Theory and Applications 89, pp. 597–614.

Weninger, N. and Fukasawa, R. (2025). “A fast combinatorial algorithm for the bilevel knapsack

problem with interdiction constraints”. In: Mathematical Programming 210.1, pp. 847–879.

Wu, Q. and Hao, J.-K. (2015). “A review on algorithms for maximum clique problems”. In: European

Journal of Operational Research 242.3, pp. 693–709.

Yang, J., Shi, X., and Prokopyev, O. A. (2023). “Exact solution approaches for a class of bilevel

fractional programs”. In: Optimization Letters 17.1, pp. 191–210.

77

https://optimization-online.org/?p=27063

	Introduction
	Literature review
	Local optimality criteria
	Exact follower: local and approximate local optimality
	Inexact follower: weak and weak approximate local optimality
	Example: maximum weighted clique interdiction problem

	Relationships between weak and approximate local optimality
	Finding a weak approximate local optimal solution
	Weak approximate local search
	Runtime and performance guarantees of (, A)-LSA
	Extension to mixed-integer and pure continuous follower

	Computational study
	Preliminaries and performance measures
	Knapsack interdiction problem (KIP)
	Pure continuous lower level (i.e., Y = Yc)
	Pure binary lower level (i.e., Y = Yb)
	Mixed-integer lower level

	Maximum weighted clique interdiction problem
	Summary insights

	Conclusion and further research directions
	Justification of the technical assumptions for Section 1
	Algorithms and discussions for Section 3
	On (weak) local search and its complexity
	Verifying (approximate) local optimality in bilevel MILP is NP-hard
	Greedy heuristic for the maximum weighted clique problem

	Proofs for Section 4
	Proof of Proposition 1
	Proof of Theorem 1
	Details for the empirical performance evaluation of Section 4

	Proofs and additional discussion for Section 5
	Example of (, A)-LSA
	Proofs for Section 5.2
	Sharpness of (, A)-LSA
	Proofs and further discussion for Section 5.3
	Extensions of our approach

	Additional illustrations and discussions for Section 6
	Knapsack interdiction problem: continuous lower level (i.e., Y = Yc)
	Maximum weighted clique interdiction problem
	Additional computational experiments on non-interdiction instances

