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Abstract. We examine a dynamic assortment planning problem in which a retailer operates under evolving

and unobservable customers’ preferences and seeks to maximize revenue. These evolving preferences are

characterized along three key dimensions—velocity, magnitude, and detectability—that, as we show, jointly

shape the complexity of the assortment planning task. We assess performance via the revenue gap relative to

a clairvoyant retailer with full knowledge of preferences and design policies that exploit the characteristics of

the preferences dynamics to “learn” from customers’ purchasing decisions. Our findings highlight a paradox:

slow but small changes in preferences can lead to substantial performance losses, akin to the “boiling frog”

apologue, as failure to respond to gradual market changes results in missed opportunities. We show that, to

mitigate this risk efficiently, the retailer should frequently re-estimate up-to-date preferences to avoid offering

an outdated assortment. Furthermore, we explore how information about preferences’ characteristics enables

the design of improved assortment strategies. In particular, we consider scenarios in which the retailer antici-

pates an abrupt change in preferences. In such cases, frequently re-estimating preferences provides a practical

hedge against this market dynamic. Yet, when more information on preferences is available to the retailer, tai-

lored strategies based on detecting a change in preferences substantially improve performance. Through theo-

retical analysis and empirical validation using data from a major Chilean retailer, we demonstrate the value of

aligning assortment strategies with the dynamic nature of preferences and the available information on them.

1 Introduction

Since the advent of e-commerce in the late 1990s and concurrent advances in information tech-

nology, online retailers have benefited from unprecedented opportunities to display and update

their product mixes with minimal friction (Caro et al. 2020). Not only do online channels enable

personalized targeting (Bernstein et al. 2019), but they also deliver unparalleled insights into con-

sumer purchasing patterns. However, despite all these advantages, online platforms face a critical
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constraint: the limited display space on key pages (e.g., homepages and search results). This lim-

itation forces them to be highly selective about the products they showcase. Consequently, they

must carefully align their assortments with customers’ preferences to maximize revenue from sales.

The dynamic nature of customers’ preferences has been recognized since the 1960s with early

insights from behavioral learning theory shaping our understanding of brand loyalty (J. N. Sheth

1967). Recognizing the impact of evolving customers’ preferences offers an opportunity to better

understand the market in which retailers operate (Hartmann and Nair 2010). Whether operating

in brick-and-mortar stores or online, retailers should consider changing consumer behavior when

setting up core operational functions, ranging from pricing to assortment planning (Lattin 1987;

Chintagunta et al. 2002). Nevertheless, a large portion of the assortment planning literature still

assumes that customers’ preferences remain static, or, put in another way, time-homogeneous.

Demographic trends and the slow evolution of long-term tastes can subtly yet persistently mod-

ify consumer behavior (Döpper et al. 2024)—a dynamic that becomes particularly salient when

viewed through the lens of assortment planning. Indeed, due to its combinatorial nature, small

changes in preferences might modify drastically the assortment decision. Moreover, abrupt disrup-

tions—such as pandemics, financial crises, or viral social media phenomena—can rapidly overturn

established purchasing patterns, forcing retailers to quickly adapt their assortment offering accord-

ingly. For instance, recessions have been shown to drive consumers toward budget-friendly alter-

natives, disadvantaging high-end products (Hampson and McGoldrick 2013). Likewise, pandemic

outbreaks can cause abrupt surges in demand for essential products like medical supplies, while

simultaneously depressing sales of services due to the sanitary restrictions in place (J. Sheth 2020).

Accordingly, a retailer’s ability to recognize and respond to evolving customers’ preferences can

create opportunities for growth or, conversely, leave it vulnerable to dynamic market forces. To

illustrate the stakes, consider the boiling frog apologue1: when a frog is placed in water that is grad-

ually heated, it fails to perceive gradually increasing danger until it becomes too late. Similarly, a

retailer that fails to recognize (or misreads) the persistent evolution of customers’ preferences risks

being caught off guard. However, accurately identifying these dynamics is not always straightfor-

ward, as some changes may go unnoticed by a retailer following a pre-established assortment plan.

Objective. We address the problem of dynamic assortment planning for a retailer facing

customers whose preferences evolve over time. Our aim is to characterize the complexity of the

assortment planning problem for retailers in terms of the information they have on the evolving pref-

erences. Accordingly, we characterize changes along three dimensions: (i) the velocity, (ii) the mag-
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nitude, and (iii) the detectability. When changes occur within the assortment offered by the retailer,

we say that they can be detected passively by monitoring sales data. In contrast, changes involving

products outside the current offering require active exploration through alternative assortments.

Model. We consider dynamic assortment planning over a known horizon T , where customers

arrive sequentially and decide whether to purchase from the offered assortment. The retailer aims

to maximize profit but operates with uncertainty regarding how customers’ preferences evolve

over time. Our problem lies within the broader domain of sequential decision-making under un-

certainty (Hannan 1957). To address the challenges posed by evolving preferences, we propose

assortment strategies that adapt “on the fly” to changes in purchasing behavior.

We evaluate the retailer’s performance by comparing the expected revenue it can achieve un-

der a given policy (an assortment strategy) to that of a clairvoyant retailer (an oracle) endowed

with perfect knowledge of preferences. This difference is commonly referred to as regret, a well-

established metric in the online learning literature (Foster and Vohra 1999). It serves as a proxy

to capture the opportunity cost from not having complete information on customers’ preferences.

In particular, we focus on the worst-case regret and its dependence on the time horizon T . This

measure can be viewed through a game-theoretic lens: the retailer selects an assortment strategy

first, and the environment then responds adversarially by determining customers’ preferences.

Under static preferences, dynamic assortment planning typically tackles the classical trade-off

between exploration and exploitation (Lai and Robbins 1985), balancing the need to explore dif-

ferent assortments to collect data on consumer purchasing behavior against the goal of exploiting

current estimates to maximize immediate revenue (Caro and Gallien 2007). These algorithms typ-

ically rely on an initial exploration step followed by an exploitation period (Sauré and Zeevi 2013).

We argue that this approach is inadequate in the case of evolving customers’ preferences, “persistent

exploration” becomes essential in our setting. In particular, we address the trade-off between ex-

ploration and exploitation, and examine how it is influenced by the structural information available

to the retailer. Our approach is modular, meaning that any improvement in dynamic assortment

planning for static preferences directly enhances the performances of our proposed methods.

Technical contributions. We bridge diverse strands of research, ranging from dynamic pricing

to stochastic programming, to present a unified characterization of dynamic assortment planning

with evolving customers’ preferences. Our contributions, summarized in Table 1, are threefold.

First, we analyze the case in which the retailer is equipped only with information on the “mag-

nitude” of changes in customers’ preferences. This quantity, denoted by MT , provides a clear
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Velocity Magnitude Detectability Preferences Regret (informal) Section

- MT - Unknown O
(
RA(T 1

2M
− 1

2
T

)
· T

1
2M

1
2
T

)
4

Abrupt MT Active Unknown O
(
RA(TMT ) ·M−1

T

)
5.2

Abrupt bounded Active Unknown O
(√
T log T +RA(T )) 5.3

Abrupt ≥ constant Passive Unknown O
(
log T +RA(T )) 5.4

Abrupt - Active Known O
(√
T log T

)
A.1

Abrupt - Passive Known O
(
log T

)
A.2

Table 1: Summary of our contributions. We categorize preferences changes along three dimensions: velocity,
magnitude, and detectability. The column “preferences” indicates whether the preferences after the change are
known by the retailer. For each setting, we report the regret of the proposed assortment strategies, which depends
on the information available to the retailer. Here, RA(

T
)
denotes the regret of an assortment strategy A designed

for static preferences over T periods, and MT refers to the largest magnitude of change (formally defined later).

indication of how unstable or dynamic these preferences may be. In particular, we show that no

assortment strategy can achieve a regret lower than O
(
T 3/4M

1/4
T

)
. Although our proof techniques

build upon the approach by Besbes et al. (2015), our bound deviates from theirs due to key differ-

ences in modeling variability of the environment. Notably, we reveal a jump in the opportunity cost

compared to settings with time-homogeneous preferences in which assortment strategies typically

achieve adversarial regret of order O
(√
T log T

)
; see Agrawal et al. (2019).

To match our lower bound, we propose a “restart-and-learn” algorithm that partitions the sell-

ing horizon into segments and applies a learning subroutine tailored to static customers’ preferences

within each segment. If this subroutine achieves regret on the order of O(
√
T ), then the overall pol-

icy matches the lower bound. In other words, the retailer can attain the best possible performance

even when it has only limited information about the dynamics of customers’ preferences.

Second, we consider the case in which the retailer anticipates a single abrupt shift in consumer

behavior, transitioning from known pre-change preferences to unknown post-change preferences,

with neither the timing nor the extent known a priori. Our analysis builds on Besbes and Zeevi

(2011), who study a related setting in dynamic pricing. However, while their analysis assumes

full knowledge of post-change demand and leverages specific structural conditions, we extend their

approach to assortment planning under weaker informational and structural assumptions.

When limited additional information is available on the magnitude of the change, we show that

any assortment strategy must incur a regret of at least O
(
T 1/2M

−1/2
T

)
. We show that the restart-

and-learn policy attains regret of order O
(
RA(T ·MT ) ·M−1

T

)
, where RA(∆) represents the regret

achieved by the assortment strategy A when serving ∆ customers with preferences that remain

static. These results indicate that the difficulty of the setting might not only arise from large and

sudden changes but also from small and incremental ones.
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Third, we discuss settings in which the retailer anticipates that preferences vary within a known

range. We focus on the detectability of such changes, distinguishing two cases. A change is pas-

sively detectable if it affects products that would be offered under a strategy specifically designed

for static preferences. On the other hand, the change is said to be actively detectable if it only

affects products that would not be offered under such strategy, thus requiring “active” exploration.

For actively detectable changes, we establish a regret lower bound of order O(
√
T ). We then

propose an active assortment strategy where the retailer strategically deploys multiple assortments

and applies a change detection procedure to identify shifts in preferences. This strategy achieves a

regret of order O
(√
T log T

)
, in addition to that from learning the new preferences.

Then, for passively detectable changes, our approach follows a strategy designed for (known)

static preferences and applies a change detection procedure with a certain frequency. Once a change

is detected, the retailer transitions to a learning algorithm to adapt to new preferences, incurring a

regret of order O
(
log T

)
on top of that from learning the new preferences. Notably, in this setting,

exploration and exploitation are not in conflict and can be pursued somewhat simultaneously.

Managerial insights. Evolving customers’ preferences pose a hidden threat to retailers’ as-

sortment strategies—much like how gradually rising water temperature can fatally catch a frog off

guard. When no additional information on the changes is available, continuously restarting the

learning process helps avoid being “boiled.” On the other hand, our result shows that when struc-

tural information on the velocity, magnitude, and detectability is gathered by the retailer, then

it can be exploited to improve performance. Notably, when preferences are expected to change

abruptly by a minimal amount, effective policies focus on change detection rather than periodic

resets. Finally, a case study using data from a large Chilean retailer confirms the practical ben-

efits of leveraging structural information on the change and underscores the necessity of staying

responsive to evolving preferences.

Organization of the paper. Section 2 reviews the relevant literature. In Section 3, we provide

a formulation of the dynamic assortment planning problem with evolving customers’ preferences.

Section 4 presents an algorithm to handle these variations and establishes performance guarantees

that no algorithm can surpass. Next, Section 5 addresses abrupt changes in purchase pattern, where

we establish fundamental limits on policy performance and propose effective assortment strategies.

In Section 6, we present a case study with click data from a major Chilean retailer. Finally,

Section 7 provides concluding remarks. All proofs are provided in the electronic companion.

Notations. For n ∈ N, let [n] := {1, . . . , n}, and denote the cardinality of a set A by |A|. All
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random variables are defined on a probability space (Ω,B,P).

2 Literature review

Consumer behavior. Discrete choice models have become central in assortment planning (Kök

et al. 2015), following early work by Mahajan and Van Ryzin (2001) and Talluri and Van Ryzin

(2004). Choice models typically represent customers’ preferences by linking the utility they at-

tach to each product to purchase probabilities (Train 2009). Initial studies focus on parametric

approaches, particularly the multinomial logit (MNL) model, valued for its analytical simplic-

ity (Rusmevichientong et al. 2010). Yet, the MNL model’s “independence of irrelevant alternatives”

property limits its ability to capture realistic substitution patterns.

Extensions such as the mixed logit (Feldman and Topaloglu 2015), nested logit (Gallego and

Topaloglu 2014), and Markov chain choice (MCC) models (Blanchet et al. 2016) capture more

realistic substitution patterns but introduce new challenges. The mixed logit may overfit in data-

scarce settings, while MCC lacks a closed-form expression for purchase probabilities, complicating

its estimation. To address the computational burden that these models pose in assortment plan-

ning, approximation algorithms are often derived (Golrezaei et al. 2014; Blanchet et al. 2016). In

parallel, non-parametric approaches—typically based on consumers’ product rankings—have also

attracted interest (Honhon et al. 2012; Van Ryzin and Vulcano 2015; Bertsimas and Mǐsić 2019).

Role of learning. Since customers’ preferences are typically unknown to the retailer, studies

have emerged on recovering them from the data. Learning customers’ preferences can be broadly

divided into two settings. In the offline setting, pre-existing sales data are used to calibrate a

model for customers’ preferences. For example, Farias et al. (2013) introduce a data-driven method

that relaxes traditional parametric assumptions by inferring the model structure directly from sales

data. In the online setting, the retailer learns by continuously updating its estimate of preferences

“on the fly” from both the observed sales data and the assortments displayed to the customers.

Multi-armed bandit (MAB) algorithms are commonly used in online learning to balance explo-

ration—gathering information about customers’ preferences—and exploitation—maximizing imme-

diate revenue (Cesa-Bianchi and Lugosi 2006). Building on this foundation, the seminal work by

Caro and Gallien (2007) introduces an MAB approach for dynamic assortment planning. Sub-

sequent contributions by Rusmevichientong et al. (2010) and Sauré and Zeevi (2013) incorporate

choice models into the bandit setting and achieve regret of order O(log T ), matching the asymptotic

lower bound established by Lai and Robbins (1985). Moreover, these techniques have been refined
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for various choice models, such as for MNL (Agrawal et al. 2019) and for MCC (Li et al. 2025).

Learning in varying environments. In dynamic retail environments, customers’ preferences

might not always be time-homogeneous, yet most traditional assortment models assume otherwise.

This “non-stationarity” is typically addressed by allowing demand parameters to vary over time.

For example, Golrezaei et al. (2014) discuss non-stationarity under the restrictive assumption that

the retailer knows exactly how preferences change. Similarly, Foussoul et al. (2023) consider a multi-

armed bandit problem which involve a time-varying MNL model. Though their model fits within

our broader approach, our study takes a different direction, examining how structural information

on customers’ preferences may influence the retailer’s assortment strategy and the resulting revenue.

In the broader context of revenue management, the challenge of learning the demand function

in dynamic pricing is addressed by Besbes and Zeevi (2009), and is extended by Besbes and Zeevi

(2011), Besbes and Sauré (2014), and Keskin and Zeevi (2017) to account for changing demand.

Beyond revenue management, Besbes et al. (2015) consider a non-stationary stochastic optimization

problem with unknown, time-varying cost functions constrained by a bounded variation budget.

They establish a fundamental lower bound on the regret of O(T 2/3M
1/3
T ), where MT denotes the

total variation of the cost functions, and propose a policy with regret that matches this bound.

In non-stationary online optimization, two main paradigms prevail. In the first, parameters are

allowed to vary over time, subject to a bound on their cumulative variation (Besbes et al. 2015);

in the second one, only a finite number of abrupt changes are permitted. For the latter, some algo-

rithms rely on sliding window techniques to focus learning on recent data (Garivier and Moulines

2011), while others employ change-detection methods to reset and re-learn model parameters upon

detecting a change (Zhou et al. 2020). In this abrupt-change setting, no policy can achieve regret

below the fundamental O(
√
T ) bound by Garivier and Moulines (2011). By contrast, classical sta-

tionary settings yield instance-dependent regret rates of O(log T ) or, in adversarial cases, O(
√
T ).

Change detection for abrupt shocks. In this study, we underscore the importance of de-

tecting abrupt changes in customers’ preferences for effective assortment planning. This challenge

is closely related to the classical quickest detection problem (Shiryaev 1963), where methods such as

the sequential likelihood ratio test (Wald and Wolfowitz 1948; Lorden 1971) aim to identify distribu-

tional changes rapidly while keeping false alarms in check. Typically, these techniques assume that

the post-change distribution is known (Pollak 1985); when it is not, parametric models (Lai 1998)

can help manage uncertainty around both the timing and nature of the change. Although these de-

tection approaches have traditionally been applied in statistical process control (Korostelev 1988),
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we leverage them to update our assortments quickly by recognizing when customers’ preferences

have changed. Our work adopts a frequentist perspective on change detection, while acknowledging

that Bayesian frameworks (Tartakovsky and Veeravalli 2005) also present powerful alternatives.

3 Problem formulation

Model primitives and basic assumptions. We consider an assortment planning problem for

a retailer offeringN ∈ N differentiated products. Each product i ∈ N := [N ] is sold at a price ri > 0,

yielding a profit wi ≡ ri− ci > 0, where ci denotes the marginal acquisition cost. Customers arrive

sequentially (one per period) over a known horizon, with each customer indexed by some t ∈ [T ].

This horizon is determined by the number of arrivals, so we use “time” and “customer” interchange-

ably throughout the paper. Each customer t ∈ [T ] assigns a random utility U ti to each product i ∈

N0 := N ∪ {0}, with i = 0 representing the no-purchase option. The joint distribution of these

utilities, denoted by F t, characterizes customers’ preferences. We impose no additional structure

on F (N) ≡ (F t : t ∈ N) beyond requiring that they share a common probability space and satisfy:

P(U ti = U tj ) = 0, ∀ i, j ∈ N0, i ̸= j, ∀ t ∈ N.

Upon arrival, each customer t ∈ [T ] is presented with an assortment St chosen from a set S of

product mixes of size at most K, defined by S := {S ⊆ N : |S| ≤ K}. Given this assortment, the

customer then makes a purchase decision that maximizes its intrinsic utility. That is,

it ∈ argmax
{
U ti : i ∈ St ∪

{
0
}}

denotes the purchase decision of customer t ∈ [T ].

Single-sale assortment planning. We assume that the retailer faces neither inventory con-

straints nor switching costs, so that any customer may be offered any assortment in S. Although

these assumptions are admittedly restrictive, they are commonly adopted in the dynamic assort-

ment planning literature to isolate the effect of learning customers’ preferences; see, e.g., Sauré and

Zeevi (2013), Agrawal et al. (2019), and Li et al. (2025). For studies that incorporate inventory

constraints, we refer to Mahajan and Van Ryzin (2001), Chen et al. (2024), and Zhang et al. (2024).

We let r(St, F t) denote the expected revenue associated with offering assortment St to cus-

tomer t. Formally, it is defined as follows:

r(St, F t) :=
∑
i∈St

wi pi(S
t, F t),

where pi(S
t, F t) denotes the probability that customer t buys product i ∈ N0 within the displayed

assortment St ∈ S, when utilities are distributed according to F t.
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Specifically, we define the purchasing probability for each product from the offered assort-

ment i ∈ St ∪ {0}, including the no-purchase option, as:

pi(S
t, F t) := F t

({
x ∈ R|N0| : xi ≥ xj for all j ∈ St ∪ {0}

})
.

For products that are not included in the assortment, we set the purchase probability to zero, i.e.,

pi(S
t, F t) = 0 for all i /∈ St. For each customer t, we define the single-sale optimal assortment as:

S∗(F t) ∈ argmax
{
r(S, F t) : S ∈ S

}
.

To focus on the dynamics of assortment planning rather than the isolated single-sale problem, we

assume that the optimal assortment, denoted by S∗
t ≡ S∗(F t), is uniquely determined.

Dynamics of preferences. Unlike traditional assortment planning models, we consider set-

tings where customers’ preferences, that are represented by F (N), evolve over time rather than re-

maining static, i.e., F t ≡ F for all t ∈ N and some fixed distribution F . Since these preferences are

not directly observable, the sequence F (N) is unknown a priori, although partial information—such

as early-horizon preferences or structure on the choice model—may be available. We encapsulate

this information in the set F , which comprises all possible preferences sequences the retailer might

encounter. Notably, we assume that the retailer specifies F in advance by imposing structure on

the customers’ choice process, either via a parametric model or a ranking-based approach. Fur-

thermore, we assume that F (N) ∈ F is such that pi(S, F
t) ∈ (0, 1) for all i ∈ S, S ∈ S, and t ∈ N.

This technical condition excludes degenerate cases in which customers make deterministic choices.

The retailer may wish to incorporate insights into how customers’ preferences evolve over time

or capture specific behavioral effects within its modeling. For example, it might be particularly in-

terested in the time-inconsistent behavior of its customers. Specifically, despite maintaining stable

long-term preferences (Wood and Neal 2009), consumers occasionally deviate due to self-control

limitations. Empirical evidence from Hoch and Loewenstein (1991) indicates that consumers some-

times make choices they later regret. To capture such behaviors, the set F can be restricted accord-

ingly. This restriction, in turn, determines the maximum magnitude of the change in preferences,

denoted by M(F , T ) and defined in Section 4. Alternatively, preferences may evolve gradually over

longer periods. Empirical evidence suggests that the adoption of new communication technologies

follows a slow diffusion process driven by network effects (Tucker 2008). This gradual evolution

can also be integrated into F , and, in turn, is reflected in the dependence of M(F , T ) on T .

Assortment planning under evolving preferences. Let Ht := σ
(
(Ss, is) : s < t

)
denote

the history of offered assortments and consumer purchases prior to customer t ∈ [T ]. A sequence
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of (random) assortments π :=
(
Sπt : t ≤ T

)
is called an admissible policy if at each time t, the

assortment decision Sπt is a mapping that takes as an input the past history
(
Hs : s < t

)
for

all t ∈ [T ] and returns a feasible assortment from S. Specifically, Sπt represents the assortment

offered by policy π to customer t. We denote by P the set of all such assortment strategies.

Following the literature (Cesa-Bianchi and Lugosi 2006), we measure the performance of any

assortment strategy against that achieved by a clairvoyant retailer (called oracle) with prior knowl-

edge on F (N). Specifically, this oracle knows the preferences F t of customer t, and therefore offers

assortment S∗
t to said customer. For given preferences F (N) ∈ F , we define the oracle revenue as:

J∗(F (N), T
)
:=
∑
t≤T

r
(
S∗
t , F

t
)
.

In essence, the oracle revenue represents the best achievable profit and is not attainable in

general as retailers lack perfect knowledge on said preferences. In particular, an assortment strat-

egy π ∈ P achieves in expectation a cumulative revenue given by:

Jπ
(
F (N), T

)
:= E

{∑
t≤T

r(Sπt , F
t)
}
,

where the expectation is taken over the series of (random) assortments
(
Sπt : t ≤ T

)
offered

by assortment strategy π. Because F (N) is not known by the retailer, we define the performance

measure of an assortment strategy π ∈ P against the clairvoyant retailer, considering an adversarial

realization of F (N). Specifically, we define the adversarial regret of an assortment strategy π ∈ P as:

Rπ
(
F , T

)
:= sup

{
J∗(F (N), T

)
− Jπ

(
F (N), T

)
: F (N) ∈ F

}
.

The adversarial regret characterizes the worst-case opportunity cost incurred by the retailer

when adopting an assortment strategy without full knowledge of preferences. A natural objective,

therefore, is to construct a strategy that minimizes this regret. To formalize this idea, we define:

R∗(F , T ) := inf {Rπ(F , T ) : π ∈ P} ,

as the lowest regret attainable by the retailer.

4 Dynamic assortment planning with evolving preferences

To shed light on the challenges of assortment planning under evolving preferences, in this section,

we develop a structural characterization of preferences dynamics, with a particular focus on the

magnitude of change. This characterization allows us to establish fundamental performance limits

that no assortment strategy can surpass. Yet, we show that a simple restart-based strategy can

match this limit, revealing not only how the retailer can achieve optimal performance, but also the

inherent cost of operating in a dynamic and uncertain environment.
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4.1 A macro-level view of customers’ preferences

Rather than getting bogged down in fine-grained detail of customers’ behavior, our focus is

on capturing a broader, macro-level dynamic of evolving preferences. Accordingly, we introduce

the concepts of magnitude and velocity to characterize the variability of the environment in which

the retailer operates. Since we model preferences as probability distributions over random utility

vectors, hereafter we use the Kullback–Leibler (KL) divergence as a measure of difference between

customer’s preferences (Thomas and Joy 2006).

Magnitude. For any assortment S ∈ S and time period t > 1, we denote by Kt(S) the KL

divergence between consecutive preferences F t−1 and F t whenever S is offered2. For T ∈ N, we

define the magnitude of the environment M(F , T ) as the highest cumulative variation along a

sequence of customers’ preferences among all possible such sequences. That is:

M(F , T ) := sup
{ T∑
t=2

max
{
Kt(S) : S ∈ S

}
: F (N) ∈ F

}
.

Thus, M(F , T ) measures the magnitude of potential changes that a retailer may face. Accordingly,

a smaller magnitude guarantees that the retailer encounters only minor changes in preferences.

Example 1. We consider a retailer with N = 10 products, offering up to K = 4 items at any time.

Each product i is assumed to yield a profit of wi = 1. In this model, the utility of customer t for

product i ∈ N0 (including the no-purchase option) is assumed to be given by U ti = µti+ε
t
i, where µ

t
i

represents the deterministic component of the utility, and εti is an idiosyncratic shock following a

Gumbel distribution with location 0 and scale 1. Given an assortment S, the probability that a

customer selects product i ∈ S is given by:

pi(S, F
t) :=

νti
νt0 +

∑
j∈S ν

t
j

,

where
(
νti := exp(µti) : i ∈ [N ] ∪ {0}

)
are referred to as attraction parameters (Train 2009).

We define FMNL ≡ FMNL(MT ), parameterized by MT > 0, as the set of time-varying MNL

models in which the attraction parameters νti switch between two regimes with equal probability

at fixed intervals of length ∆ = ⌊T 1/2(8MT )
−1/2⌉. Specifically, for 1 ≤ j ≤ ⌈T/∆⌉− 1, we define νti

such that for t ∈ [(j−1)∆, j∆], νti = νai with probability 1/2, and νti = νbi otherwise; the attraction

parameters for products i ∈ {1, 2, 3, 4} are νai = 0.25 + ζ, and for i ∈ {5, 6, 7, 8} are νbi = 0.25 + ζ,

with ζ =
√
MT∆/T . For the other products, we set νai = νbi = 0.25 and νa0 = νb0 = 1. Thus, one

can verify that the optimal assortment for a single sale under νa is S∗(νa) = {1, 2, 3, 4}, whereas it

becomes S∗(νb) = {5, 6, 7, 8} under νb. Also, the parameter MT , which may depend on T , drives
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the magnitude as one can show that FMNL satisfies 2MT ≤ M(FMNL, T ) ≤ 8MT . ■

Velocity. Preferences may evolve gradually over time, exhibiting only marginal shifts from one

customer to the next as opposed to abrupt disruptions. We refer to such scenarios as slowly chang-

ing preferences, distinguishing them from more rapid or sudden transitions. Formally, for T ∈ N,

we define the velocity of the set F as the maximum difference in preferences between consecutive

customers across all possible sequences of preferences. That is:

V(F , T ) := sup
{
max

{
Kt(S) : S ∈ S, t = 2, . . . , T

}
: F (N) ∈ F

}
.

Thus, environments with a small velocity only admit gradual and slow changes in preferences.

Conversely, environments with large velocity values allow for abrupt changes in preferences as well.

t

ν

0 5 10
0

5

10

(a) Slow evolution of preferences.
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(b) Quick evolution of preferences.
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(c) Abrupt shift of preferences.

Figure 1: Evolution of customers’ preferences over time t from 0 to 10. The time required for
(
νt : t ∈ [0, 10]

)
to transition from ν = 0 to ν = 10 illustrates the velocity of the change in preferences, where a high value V(F , T )
results (Figures 1b and 1c) in a shift, while a lower value indicates (Figure 1a) a more gradual evolution.

Figure 1 illustrates this dynamic, showing how different velocities affect the possible changes

in preferences. Note that the magnitude and velocity of the environment are always guaranteed to

satisfy M(F , T ) ≤ T · V(F , T ). Thus, for a fixed horizon T , one would expect lower velocities to be

associated with a smaller magnitudes. In this study, we frame our discussion around the magnitude

rather than the velocity, although similar insights could be derived for the latter.

4.2 A fundamental lower bound on the achievable performance

We establish a fundamental performance limit that applies to any assortment strategy. To de-

rive this result, we construct a sequence of customers whose preferences are governed by the MNL

choice model. Therefore, if F includes MNL preferences, then we obtain the following result.

Theorem 1. Suppose F includes MNL preferences. Then, for T ≥ 2, we have that:

R∗(F , T ) ≥ √
2− 1

(16)2
√
2e
T 3/4M(F , T )1/4.

Theorem 1 is obtained by constructing a deliberately challenging instance in which no assort-

ment strategy can achieve consistently “good” performances. To develop this instance, we use an

MNL model with attraction parameters that systematically alternate between two distinct regimes,
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as in Example 1. Specifically, we divide the time horizon T into carefully sized sub-segments. For

each sub-segment, we randomly assign one of the two customers’ preferences with equal probabil-

ity. This setup creates a challenge for any policy: at least one sub-segment inevitably suffers from

insufficient “exploration,” thereby pushing the regret upward.

Remark 1. The technical arguments used to obtain Theorem 1, can extend beyond the MNL

choice model. Indeed, the same argument can be used to derive similar bounds for other random

utility models commonly used in the literature. ■

If the magnitude of the environment is bounded—namelyM(F , T ) = O(1)—then Theorem 1 es-

tablishes that the regret of any assortment strategy is in the order ofO(T 3/4) at best. Therefore, our

lower bound is larger than the classical O(
√
T ) regret achieved in settings with time-homogeneous

preferences (Agrawal et al. 2019). Note that our lower bound differs from that of orderO(T 2/3M
1/3
T )

obtained by Besbes et al. (2015) in non-stationary stochastic optimization (where MT corresponds

to a measure of the environment’s variability). The key difference between their result and ours

stems from their choice of measuring the environment’s variability in terms of the infinite norm of

the difference between consecutive cost functions, whereas we employ the KL divergence.

On the other hand, if the magnitude of the environment is in the order of M(F , T ) = O(Tα) for

some α ∈ (0, 1), then Theorem 1 establishes that the regret is bounded below by O
(
T

3+α
4

)
. As α

approaches 1, the magnitude becomes linear in T and no policy can achieve sublinear adversarial

regret. In other words, preferences might become so volatile that any attempt to adapt might be

rendered ineffective in reducing the long-term worst-case opportunity cost.

4.3 A near-optimal restart-and-learn assortment strategy

We propose an assortment strategy inspired by Besbes et al. (2015), who develop a general

framework to design policies in non-stationary stochastic optimization. While their approach is

tailored to convex problems, we show that its core principles remain effective in our setting.

Algorithm 1 Restart-and-learn policy π (∆,A)

Input: A batch-size ∆ and a policy A for the static setting

while 1 ≤ j ≤ ⌈T/∆⌉ do
Run A on consumer t = (j − 1)∆ + 1 to t = min

{
j∆, T

}
(restart)

j = j + 1

Recognizing the difficulty in precisely pinpointing shifts in consumer behavior, our approach

ensures that the learning process is refreshed at regular intervals, allowing the retailer to update
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its assortment according to the most recent estimates it has on customers’ preferences. More

precisely, the policy outlined in Algorithm 1 periodically restarts A, an assortment strategy for

time-homogeneous preferences (borrowed from the literature), at fixed intervals of ∆ periods.

We assess the performance of Algorithm 1 in terms of the regret of A under the worst-case

time-homogeneous preferences. Accordingly, we define the set of possible static preferences:

FS :=
{
F (N) ∈ F : F t = F t−1, t > 1

}
,

and denote the corresponding adversarial regret by RA(FS , T ). Building on this worst-case oppor-

tunity cost, we next derive an upper bound on the regret of our assortment strategy in terms of

both RA(FS , T ) and the magnitude of the environment M(F , T ).

Theorem 2. For A ∈ P and ∆ ≤ T , let π ≡ π(∆,A) be the policy defined in Algorithm 1 and

w ≡
(
wi : i ∈ N

)
. Then, for T ≥ 2,

Rπ
(
F , T

)
≤ ⌈T/∆⌉ · RA(FS ,∆)+ (N + 1

)
∥w∥1 ·

√
T∆/2 · M(F , T )1/2.

To derive Theorem 2, we evaluate the regret of our assortment strategy in two steps. First, we

introduce an intermediate benchmark—a “semi-oracle”—which fully knows customers’ preferences

in each ∆-length sub-segment but must offer a single assortment to all customers in that segment.

Then, we derive the bound on the regret by measuring the revenue difference between our policy

and the semi-oracle, and between the semi-oracle and the clairvoyant retailer.

Remark 2. The upper bound on regret relies on the performance of A under time-homogeneous

preferences. Prior work in dynamic assortment planning, including Agrawal et al. (2019) for the

MNL model and Li et al. (2025) for the MCC model, has established worst-case regret bounds for

static preferences. These bounds, in turn, reflect the combinatorial complexity of the assortment

planning problem. Thus, while Theorem 2 does not explicitly exhibit this combinatorial burden, it

still implicitly depends on it through the regret incurred by A in the static setting. ■

The choice of ∆ balances two competing forces. A smaller ∆ allows for quicker adaptation

to evolving preferences but increases reset frequency, limiting within-segment learning and leading

to excessive exploration. Conversely, a larger ∆ enables better preferences estimation but delays

adaptation. Accordingly, ∆ should be chosen small enough for timely response yet large enough to

ensure meaningful learning within each segment.
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Corollary 1. For A ∈ P and ∆ ≡ ⌈T 1/2M(F , T )−1/2⌉, let π ≡ π(∆,A) be the policy defined in

Algorithm 1 and w ≡
(
wi : i ∈ N

)
. Then, for T ≥ 2,

Rπ
(
F , T

)
≤ 2T 1/2M(F , T )1/2 · RA(FS ,∆)+ (N + 1)∥w∥1 · T 3/4 · M(F , T )1/4.

A strategic choice emerges when ∆ is set to O(T 1/2M(F , T )−1/2), which leads to the upper

bound from Corollary 1. With this choice of ∆, and provided that A incurs a regret of O
(√

∆
)
over

each sub-segment, the restart-and-learn algorithm achieves near-optimal performances, “almost”

matching the lower bound on regret from Theorem 1. As both the horizon T and the magni-

tude M(F , T ) increases, the volatility of the environment also increases. In response, reducing the

size ∆ ensures the algorithm adapts frequently enough to manage this increased volatility.

4.4 Operating with customers whose preferences evolve

The fundamental lower bound on achievable performance established in Section 4.2 illustrates

the intrinsic challenge of operating in an environment with evolving preferences. To bring this the-

oretical observation to life, we present an example that varies the magnitude of the environment,

revealing the direct impact on the performance of our assortment strategy.

Example 2. We consider a sequence of settings, in which the horizon T ranges from 1 to 10000.

For α ∈ {0, 0.5, 0.75}, we define MT = 1
8T

α and we use the set FMNL(MT ) of evolving preferences

as in Example 1. Next, we set ∆ = ⌈T 1/2M
−1/2
T ⌉ as an input of Algorithm 1. Also, we use the

policy A by Agrawal et al. (2019) as a subroutine within our strategy. ■

α = 0

α = 0.5

α = 0.75

3,000 6,000 9,000

200

400

600

800

T

Rπ
(
F , T

)

Figure 2: Regret of π (∆,A) from Algorithm 1 applied to the sequence of settings from Example 2 with MT = Tα,
for α ∈ {0, 0.5, 0.75}, where the horizon ranges from T = 1 to T = 10000. The policy is described in Algorithm 1. We
compute the average regret (in black) and the 95% confidence interval for the mean (imperceptible) over 500 instances.

The insights from Figure 2 highlight a key challenge for retailers facing customers whose prefer-

ences evolve. As α increases, the magnitude of the environment MT becomes larger, and therefore

the oscillation between preferences from FMNL(MT ) becomes more frequent (recall Example 1).

This volatility limits the retailer’s ability to stay up to date with the latest customers’ preferences,

thereby necessitating more frequent resets. Corollary 1 has a key economic consequence: in highly
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variable environments, the inability to fully capture customers’ preferences results in a significant

opportunity cost, characterized by an increasing regret over time.

As described in Figure 2, if the magnitude of the environment increases, then the retailer faces

greater challenges, resulting in higher regret. Yet, the restart-and-learn strategy is shown to be

nearly optimal. However, it does not exploit any structural properties inherent in consumer behavior

dynamics. This observation raises an important question: can the retailer develop an adaptive

strategy that exploits any structural properties rather than relying solely on periodic resets?

5 Exploiting structural information about preferences’ dynamics

In this section, we explore how structural information about potential changes can improve

the retailer’s performance. In particular, we consider settings in which the retailer expects a single

abrupt change in preferences. Our analysis shows that detecting and responding effectively remains

challenging in this situation. However, when external signals—such as market intelligence or inter-

nal analytics—offer additional insight into the magnitude, the retailer can act more proactively by

attempting to detect the change through monitoring of purchasing data. Our analysis shows how

access to structural information helps the retailer design more effective assortment strategies.

5.1 Information structure for abruptly changing preferences

In what follows, we assume that the retailer expects potential changes in preferences to occur

abruptly. This belief may be informed by market analytics or expert judgment, especially in the

context of significant disruptions, such as a pandemic, where both the timing and the impact of

the change are uncertain. We model this situation by restricting our attention to a subset FA ⊆ F

of preferences that are static except for a single unknown time τ ∈ N, which we define as follows:

FA :=
{
F (N) ∈ F : F t = F t−1, ∀ t ̸= τ > 1, τ ∈ N

}
.

We refer to F 1 and F τ as the pre- and post-change preferences, respectively. Also, we make two

assumptions regarding this setting. First, we assume that the retailer knows the initial preferences;

this assumption is mild and helps us isolate the challenge of adapting to a change from learning

the initial preferences. Second, we assume that post-change preferences within class FA are “well

separated” (Agrawal et al. 2019) in the sense that the minimum optimality gap as defined by:

γ ≡ γ(FA) := inf
{
r
(
S∗(F t), F t

)
− r(S, F t) : F (N) ∈ FA , t ∈ N , S ∈ S , S ̸= S∗(F t)

}
,

is strictly positive, i.e., γ > 0. This assumption is rather technical and prevents us from considering
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settings in which learning post-change preferences becomes increasingly difficult as T grows.

Since initial preferences are known, when needed, we denote by FA(F 1) the subset of prefer-

ences from FA in which the initial ones are given by F 1. Accordingly, we define the worst-case

performance across all possible pre-change preferences as:

R̃(F , T ) ≡ sup
{
R∗(FA(F 1), T ) : F 1 ∈ F

}
,

and assess the performance of any policy π via Rπ(FA(F 1), T ). In addition, we assume that

any shift results in a change in the corresponding single-sale optimal assortment; that is, S∗(F 1)

and S∗(F τ ) must differ by at least one product.

5.2 Passively undetectable changes with few information on their magnitude

In this section, we consider environments characterized by an abrupt change, where preferences

before and after the shift remain identical over the products included in the pre-change optimal

assortment S∗(F 1). As a result, a retailer continuing to offer this assortment would be unable to ob-

serve any change in purchasing behavior. Hence, we refer to such changes as passively undetectable.

To capture this phenomenon, we introduce the following sub-class of preferences:

FU :=
{
F (N) ∈ FA : Kτ (S∗

τ−1) = 0
}
.

The condition in the definition of FU ensures that customers’ preferences cannot be statistically

differentiated based solely on the information provided by the pre-change optimal assortment.

5.2.1 A fundamental lower bound on the achievable performance

We establish a fundamental lower bound on the performance of any assortment strategy when

confronted with an abrupt and passively undetectable change in preferences. Since the magnitude

of the environment (introduced in Section 4) serves somehow as the sole quantitative indicator

available to the retailer, this lower bound is naturally expressed in terms of M(FU , T ).

Proposition 1. There exists some finite constant3 C ≡ C(γ) > 0, such that, for T ≥ 2:

R̃
(
FU , T

)
≥ C

(
T 1/2 · M(FU , T )−1/2 − 1

)
.

The regret bound in Proposition 1 reflects a fundamental trade-off when viewed through a

game theoretic perspective of the interaction between the environment and the retailer. Because

the retailer commits to a strategy in advance, a worst-case change can be delayed until the final

period if exploration persists. Conversely, if exploration is limited at any time period, then the

change may occur around that time. Proposition 1 shows that the lower bound decreases as the
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magnitude increases. However, this observation does not imply that larger magnitude make the

retailer’s task any easier; rather, it suggests that the bound becomes somehow less informative.

Proposition 1 impose a constraint on the preferences that can be picked by the environment.

By contrast, in Theorem 1, the environment adversarially selects preferences with very limited

constraints (that define the set F). In this regard, the environment is granted more flexibility in

choosing preferences. From this perspective, abrupt changes represents a special case of the dynamic

examined in Section 4, which in turn explains the difference in the achievable performance.

5.2.2 A near-optimal assortment strategy to face abruptly changing preferences

Settings with high magnitude may accommodate large or small changes. Accordingly, adapt-

ing to such changes may be challenging for the retailer. However, if the retailer knows that the

magnitude is uniformly bounded above by a constant M , then the retailer benefits from knowing

that preference changes might not be arbitrarily large. In this regime, using the restart-and-learn

policy from Algorithm 1, with a carefully chosen segment length, matches the lower bound.

Proposition 2. For M(FU , T ) < M , F 1 such that F (N) ∈ FU , A ∈ P and ∆ ≡ ⌈T · M(FU , T ) ·

M−1⌉, let π ≡ π(A,∆) be the policy defined in Algorithm 1. Then, for T ≥ 2:

Rπ(FU (F 1), T ) ≤ 4M · M(FU , T )−1 · RA (Fb(F 1),∆
)
,

where Fb(F 1) :=
{
F̃ (N) ∈ FS , F̃ 1 = Gτ , G(N) ∈ FU (F 1)

}
.

Our strategy partitions the horizon into O
(
M ·M(FU , T )−1

)
segments, applying A repeatedly.

If A achieves a regret of O(
√
T log T ) under static preferences, as in Agrawal et al. (2019), then

Proposition 2 implies that our strategy incurs a regret of order O
(
T 1/2 · M(FU , T )−1/2

)
, up to

logarithmic terms. This regret “nearly” matches the lower bound in Proposition 1. Moreover, since

our regret bound is strictly lower than that of Theorem 1, which is of order O(T 3/4), it somehow

quantifies the value of knowing that the change is abrupt and cannot be arbitrarily large.

Example 3. We consider a sequence of settings, in which the horizon T ranges from 1 to 50, 000,

with an abrupt change at τ = T . Preferences follow an MNL model with pre- and post-change

attraction parameters νa and νb, respectively. For products i ∈ {1, 2, 3, 4}, we set νai = 0.25 + ζ,

while all others have νai = 0.25. After the change, products i ∈ {5, 6, 7, 8} switch to νbi = 0.25+1.1ζ,

with all others remaining unchanged. We use ζ ∈ {0.3, 0.35, 0.4} and set νa0 = νb0 = 1 for the no-

purchase option. Under this setup, the upper bound on the magnitude is M(F̃U , T ) < (ζ/5)2.

The optimal assortment shifts from S∗(νa) = {1, 2, 3, 4} to S∗(νb) = {5, 6, 7, 8}. These preferences
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cannot be distinguished solely from purchases under S∗(νa), so that the induced sequence belongs

to FU (F 1). In this example, Algorithm 1 uses A by Agrawal et al. (2019) as a subroutine. ■
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Figure 3: Regret of π (A,∆) from Algorithm 1, applied to the sequence of settings from Example 3 in which the
horizon ranges from T = 1 to T = 50, 000, with τ = T . We compute the average regret (in black) and the 95%
confidence interval for the mean (imperceptible), for ζ ∈ {0.3, 0.35, 0.4} over 500 instances.

As the magnitude decreases, regret increases due to the shrinking segment size ∆. This counter-

intuitive observation occurs because smaller magnitude leads to minor, harder-to-detect changes, re-

quiring extensive exploration for adaptation. Conversely, larger magnitude allows for both small and

large changes, creating a trade-off: excessive exploration is necessary when there is no shift, while

insufficient exploration makes the retailer “vulnerable” to larger changes, increasing the regret.

The retailer mitigates this trade-off by selecting a sub-segment size that is small enough to

handle early large changes yet large enough to handle changes that are minor. Figure 3 highlights

this trade-off and shows that regret increases as ζ decreases, aligning with Proposition 2. Indeed,

lower values of ζ reduce the magnitude, which, in turn, decrease the segment size ∆. In such cases,

our restart-and-learn strategy resets the learning process more frequently.

The discussion in this section highlights a key challenge in dynamic assortment planning with

abrupt changes in preferences. The primary difficulty lies not only in large, sudden changes but also

in smaller, more subtle ones. Overreacting to minor fluctuations may initially appear as excessive

exploration. However, our findings demonstrate that ignoring subtle yet persistent changes can lead

to long-term misalignment with customers’ preferences. These observations underline the value of

structural information, such as the abrupt nature of the change, in helping the retailer adapt more

effectively. This raises a natural question: can additional knowledge about the nature or structure

of the change further support the retailer in refining its assortment strategy?

5.3 Passively undetectable changes with information on their magnitude

We consider environments with abrupt and passively undetectable changes. Yet, we assume

that the retailer expects the change to be neither arbitrarily small nor excessively large, but rather
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to fall within a certain range. Accordingly, we introduce the subset of preferences defined by:

F̃U :=
{
F (N) ∈ FA : Kτ (S∗

τ−1) = 0, max
{
Kτ (S) : S ∈ S

}
∈ (κ, ϕ)

}
,

for some constants κ ∈ (0, 1) and ϕ > κ, which provide a range for the magnitude M(F̃U , T ).

While the first condition above ensures that preferences are passively undetectable, the second

one guarantees the existence of an assortment in which the preferences are sufficiently distinct.

Together, these elements encapsulate the extra structural information available to the retailer, a

property we refer to as the separability condition.

5.3.1 A fundamental lower bound on the achievable performance

We now establish a lower bound on the performance of any assortment strategy when the change

is both passively undetectable and separable. Our result parallels that of Besbes and Zeevi (2011)

in dynamic pricing and draws on probabilistic techniques from Tsybakov (2003). However, in our

setting, the combinatorial nature of assortment planning requires different technical arguments.

Proposition 3. There exists some finite constant C ≡ C
(
γ, ϕ

)
> 0, such that, for T ≥ 2:

R̃
(
F̃U , T

)
≥ C

√
T .

This result follows the same reasoning as Proposition 1. Specifically, the argument makes a

distinction between assortment strategies that explore sufficiently at all times and those that fail

to do so, leading to the same fundamental trade-off.

5.3.2 An efficient active-learning assortment strategy

The separability condition provides additional information that enables the retailer to move

away from restart-based approaches and instead adopt assortment strategies focused on detecting

the change. Accordingly, we introduce the active-monitoring-then-learn policy (see Algorithm 2).

The policy alternates between exploration and exploitation cycles of lengths ∆e = O(log T ) and

∆o = O(
√
T ), respectively. During each exploration cycle, the retailer offers assortments from E , a

subset of S designed to detect the change. If no change is detected via statistical testing, the pre-

change optimal assortment is offered in the subsequent exploitation cycle. Otherwise, an assortment

planning algorithm A is implemented for the remainder of the horizon to learn the new preferences.

This assortment strategy differs fundamentally from Algorithm 1, as it actively seeks to detect

whether a change in preferences has occurred. In particular, it employs a statistical test to determine

whether the deviation between the empirical purchasing probabilities and those expected from pre-

change preferences is “abnormally” large. Proposition 4 bellow establishes an upper bound on the

20



Algorithm 2 Active-monitoring-then-learn policy π
(
κ, F 1, E ,A

)
Input: A constant κ > 0, a distribution F 1, a set of test assortments E , and a policy A
Initialize: Set detect = False, t = 0, ∆o :=

√
T/κ2, ∆e := 4(log T )/κ2

while detect = False and t ≤ T do

Offer Su = S∗(F 1) for u = t+ 1, . . . , t+∆o (exploit pre-change optimal assortment)

Offer each assortment S ∈ E to ∆e customers (explore)

if
∣∣∑t+∆

u=t+1 1
{
iu = i

}
− pi(S, F

1)
∣∣ > ∆κ/2 for some i ∈ S ∪ {0}, and S ∈ E then

detect = True (change detected)

t = t+∆o +
∣∣E∣∣∆e

Run A on customers t+ 1 to T (post-change policy)

regret of our strategy. There, we assume that E includes the assortment satisfying the separability

condition in F̃U (we provide further details on the selection of E in the next section).

Proposition 4. For κ > 0, F 1 such that F (N) ∈ F̃U and A ∈ P, let π ≡ π
(
κ, F 1, E ,A

)
be the policy

defined in Algorithm 2. Then, there exists finite constants C1 ≡ C1(K,κ, E) > 0, C2 ≡ C2(κ, E) > 0

and t ≡ t(κ,K), such that, for T ≥ t:

Rπ(F̃U (F 1), T ) ≤ C1 + C2 log T + 4∥w∥1|E|
√
T log T +RA(F̃b(F 1), T

)
,

where F̃b(F 1) :=
{
F̃ (N) ∈ FS : F̃ 1 = Gτ , G(N) ∈ F̃U (F 1)

}
.

The regret upper bound in Proposition 4 consists of three components, each capturing a distinct

source of “inefficiency” in our assortment strategy. First, the O(log T ) term accounts for the

detection delay induced by the statistical test used to identify preferences changes, reflecting the

time required to gather sufficient evidence that a shift has occurred. Second, a O(
√
T log T ) term

arises from continuously exploring assortments from E , which is unnecessary in cases where the

change happens near the end of the horizon. The last term corresponds to the regret incurred

while learning the new optimal assortment after the change occurs.

Recall that Proposition 2 provides a regret bound in cases where the magnitude is uniformly

bounded above. By contrast, Proposition 4 establishes a similar result under the additional as-

sumption that the retailer knows that the change cannot be arbitrarily small. The value of this

information manifests subtly within the O(
√
T ) term with |E|. Indeed, note that such term is

linear in the size of the set of test assortments E , which captures the combinatorial structure of

the problem through the number of test assortments. Consequently, it is important to construct E

with minimal cardinality. In the next section, we construct this set by leveraging the separability
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condition, thereby reducing the regret’s dependence on the underlying combinatorial complexity.

5.3.3 Constructing a set of test assortments to detect changes

Constructing the set of test assortments E is critical for balancing exploration costs and detection

accuracy in Algorithm 2. We propose an approach to construct E that exploits the separability

condition. Our construction relies on two key assumptions about the underlying preferences:

(i) The pre- and post-change distributions F 1 and F τ are both parametric.

(ii) For any ρ ∈ RN+ with
∑

i∈N ρi < 1, there exists a unique parameter vector η(ρ) such that4

pi(S, η(ρ)) = ρi for all i ∈ S and S ∈ S.

Assumption (i) applies to parametric models commonly used in assortment planning, such as

MNL, though it excludes ranking-based ones. Assumption (ii), an identifiability condition, ensures

that model parameters can be uniquely inferred from estimated purchasing probabilities, a property

satisfied by the MNL (Sauré and Zeevi 2013).

To construct E , we partition the product set N into ⌈N/K⌉ disjoint subsets Aj , each of size

at most K, and define E := {A1, . . . , A⌈N/K⌉}. We refer to this construction as the partitioning

approach. As shown in Proposition 4, the regret bound scales with |E|, growing as O
((
N
K

))
in the

absence of structural assumptions. Assumptions (i) and (ii) ensure that any change in preferences

affecting purchasing behavior is reflected in the model parameters. By following the partitioning

approach, we can infer updated purchase probabilities, compare them to pre-change parameters,

and detect changes in preferences. Therefore, partitioning reduces this complexity to O
(
⌈N/K⌉

)
.

Note that the partitioning approach does not guarantee that E includes an assortment that

satisfies the separability condition within F̃U . However, one could modify the statistical test for

change detection in Algorithm 2 by:

max
S∈S

max
i∈S∪{0}

∣∣pi(S, F̂ )− pi(S, F
1)
∣∣ > κ/2,

where F̂ denotes the preferences estimated from the purchasing data collected by offering the

assortments from E . This modification comes at the expense of an increase in the computational

complexity. Therefore, for the purposes of this study, we assume that the partitioning approach

returns an assortment in E that satisfies the separability condition within F̃U .

When post-change preferences are known, it is possible to design a test assortment that balances

detection performance and revenue exploitation (a direction briefly explored in Appendix A). The

broader problem of selecting a set of test assortments, particularly those that better exploit available

information about the magnitude of the change, remains an open question for future research.
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Example 4. We consider a sequence of settings, in which the horizon T ranges from 1 to 100000,

with a single abrupt change at τ = T . Preferences follow an MNL choice model, with pre- and post-

change attraction parameters νa and νb, respectively. Initially, products i ∈ {1, 2, 3, 4} have νai =

0.6, while others have νai = 0.1. After the change, products i ∈ {5, 6, 7, 8} switch to νbi = 1, with

all others remaining unchanged. The no-purchase option has νa0 = νb0 = 1. The optimal assortment

thus changes from S∗(νa) = {1, 2, 3, 4} to S∗(νb) = {5, 6, 7, 8}. Moreover, κ = 0.58 is a valid lower

bound for the maximum change magnitude in F̃U . The change is undetectable using only S∗(νa),

ensuring the induced preferences F (N) belong to F̃U . ■
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Figure 4: Regret of π(κ, F 1, E ,A) from Algorithm 2 with κ = 0.58, applied to the sequence of settings from
Example 4 in which horizon ranges from T = 1 to T = 100, 000, where we set τ = T . We compute the average
regret (in black) and the 95% confidence interval for the mean (imperceptible) over 500 instances. Also, P indicates
the partition approach whereas the value |E| indicates how many assortment were drawn randomly from S.

We compare the partitioning approach P to a naive sampling one, where |E| ∈ {25, 100} as-

sortments are selected randomly (as enumerating all possible assortment is computationally too

expensive). The regret in Figure 4 evaluates our policy on the instance described in Example 4.

When regret is scaled by
√
T , a logarithmic convergence pattern emerges, empirically validating

Proposition 4. Moreover, these empirical results highlight that the size of E plays a key role in our

assortment strategy performance: a smaller carefully chosen set leads to lower regret, emphasizing

the importance of a strategic selection of the set of test assortments for the retailer.

5.4 Passively detectable changes in preferences

We now consider cases in which the retailer expects changes in customers’ preferences to manifest

themselves within the pre-change optimal assortment. For that purpose, we define the class of

preferences with passively detectable changes as:

FD :=
{
F (N) ∈ FA : Kτ (S∗

τ−1) > ε
}
,

where we assume that the retailer possesses additional structural information regarding the change.

Namely, the change cannot be arbitrarily small and ε ∈ (0, 1) provides a lower bound on the
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magnitude of the environment. Thus, preferences in FD exhibits a large enough change toward

products in the pre-change optimal assortment. Consequently, the retailer can detect such shifts

“passively” by continuing to offer the pre-change optimal assortment and analyzing purchasing data.

5.4.1 A fundamental lower bound on the achievable performance

We now derive a fundamental performance bound for any assortment strategy when the change

can be detected passively. Our result parallels that of Besbes and Zeevi (2011) in the context

of dynamic pricing with abruptly changing demand, though key differences arise due to the non-

convexity of the assortment planning problem, which necessitates different technical arguments.

Proposition 5. There exists constants C ≡ C (γ, ε) > 0 and t ≡ t (γ, ε) > 0, such that, for T ≥ t:

R̃∗ (FD, T ) ≥ C log T.

The result follows from a construction argument in which we design an adversarial change point τ

for any given assortment strategy. Specifically, for any policy, one can find τ such that the policy

fails to offer the post-change optimal assortment within a time interval of length O(log T ) around τ ,

resulting in a regret increase of O(log T ). Remarkably, our bound, up to a constant factor, matches

the classic lower bound by Lai and Robbins (1985) for well-separated multi-armed bandit prob-

lems. This finding highlights that when the retailer leverages structural detectability properties,

identifying the change is as challenging as learning new well-separated customers’ preferences.

5.4.2 An efficient passive-learning assortment policy

We introduce the passive-monitoring-then-learn policy, which leverages the detectability of the

change in preferences (see Algorithm 3). This assortment strategy operates in cycles of length

∆ = O(log T ), during which the retailer monitors unexpected changes in purchasing frequencies

within the pre-change optimal assortment. If no change is detected, then the pre-change optimal

assortment is maintained; otherwise, the retailer switches to an algorithm to learn the new prefer-

ences. In contrast to Algorithm 2, there is no necessity in exploring alternative test assortments.

Next, we establish an upper bound on the regret of the passive monitoring assortment strategy.

Proposition 6 shows that this bound, apart from the regret incurred when learning new preferences,

closely matches the best achievable performance.
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Algorithm 3 Passive-monitoring-then-learn policy π
(
ε, F 1,A

)
Input: A constant ε > 0, a distribution F 1, and a policy A for the static setting

Initialize: Set detect = False, t = 0, ∆ = 4(log T )/ε2

while detect = False and t < T do

Offer Su = S∗ (F 1
)
for u = t+ 1, . . . , t+∆ (exploit pre-change assortment)

if
∣∣∑t+∆

u=t+1 1
{
iu = i

}
− pi(S

∗(F 1), F 1)
∣∣ > ∆ ε/2 for some i ∈ S∗(F 1) ∪ {0} then

detect = True (change detected)

Set t = t+∆

Run A on customers t+ 1 to T (post-change policy)

Proposition 6. For ε > 0, F 1 such that F (N) ∈ FA and A ∈ P, let π ≡ π
(
ε, F 1,A

)
be the policy

defined in Algorithm 3. Then, there exists finite constants C1 ≡ C1 (ε) > 0, C2 ≡ C2 (ε) > 0 and

t ≡ t(ε,K) > 0, such that, for T ≥ t:

Rπ(FD(F 1), T ) ≤ C1 + C2 log (T ) +RA (Fb(F 1), T
)
,

where Fb(F 1) :=
{
F̃ (N) ∈ FS : F̃ 1 = Gτ , G(N) ∈ FD(F 1)

}
.

The final term in the bound from Proposition 6 reflects the regret incurred by algorithm A

in identifying the optimal assortment after the change. The initial term accounts for regret due

to detection delays (or errors) from the statistical test. If the regret of A is O(log T ), as in the

well-separated setting of Sauré and Zeevi (2013), then Proposition 6 shows that our policy also

achieves O(log T ) regret. In essence, our strategy incurs significantly lower regret than the bound

in Theorem 2. By leveraging the fact that the change is both abrupt and detectable (with a known

magnitude range), the retailer can attain substantially lower opportunity costs compared to the

general case in Section 4, where no such information is available.

Example 5. We consider a sequence of settings, in which the horizon T ranges from 1 to 10000,

with an abrupt change at τ = 1. Preferences follow an MNL models with pre- and post-change

attraction parameters νa and νb, respectively. For products i ∈ {1, 2, 3, 4}, we set νai = 0.25 + ζ

and for i ∈ {5, 6, 7, 8}, νbi = 0.25 + ζ, with ζ = 0.75. Other products have νai = νbi = 0.25, and

the no-purchase option satisfies νa0 = νb0 = 1. Accordingly, the optimal assortment changes from

S∗(νa) = {1, 2, 3, 4} to S∗(νb) = {5, 6, 7, 8}. These preferences remain distinguishable under S∗(νa),

and fixing ε = 0.1 ensures that the preferences are in FD. Moreover, applying the policy of Agrawal

et al. (2019) for static preferences results in a regret of order O(log T ) for learning the new prefer-

ences, as our instances are well-separated (see Theorem 3 of their study). ■
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Figure 5: Regret of π
(
ε, F 1,A

)
from Algorithm 3, with ε = 0.1, applied to the sequence of settings from Example 5

in which the horizon ranges from T = 1 to T = 10000, where we set τ = 1. We compute the average regret (in
black), and 95% confidence interval for the mean (imperceptible) over 500 instances. Moreover, the vertical dashed
line separates two regimes in the regret.

The regret in Figure 5 exhibits two distinct regimes. Initially, regret grows almost linearly as

long as the horizon remains comparable to the cycle length ∆ (recall Algorithm 3), the period

used to collect consumer purchasing data. During this phase, the sample size is too small to draw

reliable conclusions from the statistical test and to implement a new assortment. Once the horizon

is large enough, the regret transitions to a logarithmic regime in T , supporting Proposition 6.

5.5 Leveraging structural information from abruptly changing preferences

The preceding sections illustrate how structural information about changes in customers’ prefer-

ences can significantly improve the retailer’s assortment strategy. Specifically, even limited informa-

tion on the change (abrupt and uniformly bounded above) allows the retailer to reduce the regret’s

dependence on the number of customers from O(T 3/4) in the generic case from Section 4 to O(T 1/2).

Beyond the benefits of well-timed restarts, our findings reveal that having structural insights about

the abrupt change (such as a lower bound on the magnitude of the environment) can also help the

retailer switch to a proactive monitoring based approach. By tracking deviations in preferences

and adapting assortments only when necessary, the retailer avoids redundant exploration.

This advantage is particularly pronounced when the shift occurs within the pre-change optimal

assortment. In such cases, collecting purchasing data from that assortment is sufficient to detect

changes without disrupting operations. By leveraging this information on the detectability of the

change, the retailer can introduce a new assortment as soon as a shift in preferences is detected,

avoiding both excessive exploration and prolonged misalignment with new preferences. As a result,

the incurred opportunity cost is only of order O(log T ) in addition to that of learning the new

preferences. Notably, this regret scales far more favorably with the number of customers than

the O(
√
T ) regret associated with passively undetectable environments.
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6 Case study with data from a major Chilean retailer

In what follows, we illustrate the trade-offs discussed in the previous sections through a case

study. To this end, we use clickstream data from a major Chilean retailer to simulate preferences

reflecting two market scenarios. Specifically, we examine the evolution of preferences under (i)

seasonal fashion diffusion and (ii) a sudden change induced by a pandemic shock. The first scenario

is designed to corroborate that adapting to evolving preferences should yield better performance

than applying an assortment strategy designed for static settings, something that might be obvious

asymptotically but not necessarily in practice. The second scenario aims to illustrate the potential

of incorporating structural information about the nature of the change to improve performances.

6.1 Implementation details

In our analysis, we use a clickstream dataset from a major Chilean retailer, comprising ap-

proximately 94,000 customer interactions. In each interaction, customers are presented with an

assortment of K = 4 products drawn from a portfolio of 19 items. Customers are segmented

into 42 demographic profiles defined by gender, age group, and geographic region. A comprehen-

sive description of the dataset is provided in Bernstein et al. (2019), who originally used it in the

context of dynamic assortment planning with personalization.

Customers’ preferences. We calibrate preferences using an MNL choice model, leveraging

data from specific sub-groups of the full dataset (e.g., customers from a particular region) to con-

struct our scenarios. The sub-groups used for calibration are specified at the beginning of each

scenario. The attraction parameter for the no-click option is set to 1, and each product i ∈ N

yields a profit of wi = 1. We estimate the attraction parameters using the estimator proposed by

Bernstein et al. (2019) in a similar context. Specifically, for each product i ∈ N , it is defined as:

ν̂i =

∑
t 1
(
it = i and i ∈ St

)∑
t 1
(
it = 0 and i ∈ St

) ,
where St denotes the assortment shown to customer t.

Experimental setup. We normalize the attraction parameters ν̂ by their respective maximum

values, so that max{ν̂i : i ∈ N} = 1. This scaling reduces the proportion of no-clicks during both

the learning and the change detection procedures, thereby significantly accelerating the convergence

of our procedures while preserving the relative ranking of the parameters. Moreover, since the profit

for each product is identical, the optimal assortments remain unchanged after scaling the attraction

parameters5. All experiments were executed using Python 3.10 on a computing cluster equipped
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with 32 Intel(R) Xeon(R) Gold 6126 CPUs (2.60 GHz) running Ubuntu 22.04.3; further details on

our implementation can be found in Appendix B.

6.2 Adapting to changing preferences: is it worth it?

Description of the scenario. We use the entire dataset to calibrate a scenario that captures

the seasonal evolution of customers’ preferences in the footwear market. Seasonality is a key factor

in retail and has been studied by Caro and Gallien (2007) in the context of dynamic assortment

planning. We first calibrate some initial preferences ν̂1 with the entire data. Note that, the cor-

responding initial optimal assortment contains three long boots. This estimate reflects preferences

of customers for long, insulated boots (top row of Figure 6) ideal for winter conditions.

Figure 6: The top row shows three high boots (displayed in darker tones) from the initial optimal assortment. Over
time, these are gradually replaced by three shorter shoes, as shown in the bottom row.

To construct our scenario, we postulate that as the season changes to summer, consumer tastes

gradually evolve towards preferences for shorter, lighter shoes that offer improved comfort in warmer

weather. We model this evolution as a gradual change from the initial preferences (as defined earlier)

toward a new set of preferences characterized by attraction parameters ν̂T .

To derive ν̂T , we “swap” the attraction parameters for products from the top row of Figure 6

with those from the bottom row. Consequently, the optimal assortment at the last time period

contains lighter shoes (those from the bottom row of Figure 6). The gradual “swap” in preferences

throughout the horizon is illustrated in Figure 7, showing the evolution of ν̂t for both Botas Ar-

gentinas and Vince Camuto. The transition follows a sigmoidal curve, beginning with a period of

stability before smoothly shifting to a new regime over T = 2× 106 customer visits to the retailer.

0.5 1 1.5 2
0.9

1.5

2.0

Time t (×106)

ν̂ t
(×

10
−
2
)

Figure 7: Attraction parameters evolution for Botas Argentinas (solid line) and Vince Camuto (dashed line). The
evolution is governed by st = (1 + exp(−20 t−100

T−100
+ 10))−1, with T = 2× 106; see Figure 6 for the product images.
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Figure 8: Regret incurred by two policies under customers’ preferences that evolve from winter to summer pref-
erences as a function of the horizon T . The dashed line corresponds to the policy A from Agrawal et al. (2019),
whereas the solid line corresponds to the restart-and-learn policy π(A,∆) from Algorithm 1. We compute the aver-
age regret (in black), and 95% confidence interval for the mean (imperceptible) over 100 instances.

We compare two approaches for handling seasonal transitions: the assortment strategy from

Agrawal et al. (2019) designed for time-homogeneous preferences (denoted by A) and our restart-

and-learn policy π from Algorithm 1. Policy π incorporates A as a subroutine and determines ∆

based on Corollary 1. The regret for both approaches is presented in Figure 8. For the sake of

comparison, both policies do not have access to the initial preferences ν̂1. Moreover, we consider a

sequence of settings in which the horizon T varies from T = 1 to T = 2× 106.

Discussion. The policy A performs well in the short term, matching the performance of π.

Indeed, both strategies perform similarly when the horizon is low (fewer than 5×105), but at 2×106

customers, the opportunity-cost gap between them widens by a factor of three. Our results show

that relying on the assortment strategy A becomes increasingly costly as customers’ preferences

evolve: its regret grows linearly, leading to substantial revenue shortfalls. In contrast, the adaptive

policy π achieves sublinear regret of order O(T 3/4), aligning with our theoretical predictions. This

finding highlights a risk for retailers: failing to adapt assortments in response to evolving

preferences can result in significant long-term missed profit. By contrast, retailers that

adjust their offerings (for instance through periodic restarts) mitigate revenue erosion.

6.3 Exploiting structural information: does it really pay off?

Description of the scenario. We consider a setting in which customers’ preferences change

abruptly due to a pandemic, reminiscent of the COVID-19 crisis. In this scenario, we assume that

the retailer has initially limited visibility into the impending surge in online shopping, unlike today’s

more advanced understanding of similar crises’ effects on e-commerce (Oblander and McCarthy

2023). We calibrate the pre-change preferences using the data from the 30–39 age range, represented

by the attraction parameters ν̂1 in Figure 9. When the pandemic strikes, a broader cross-section of

consumers transitions from in-store to online shopping (from one day to the next), leading to new

attraction parameters ν̂τ , calibrated using the entire data.
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Figure 9: Estimated attraction parameters ν̂1 (age 30–39) against ν̂τ (all consumers).

The optimal assortment before the change occurs is S∗(ν̂1) = {11, 12, 17, 18}, which then shifts

to S∗(ν̂τ ) = {11, 12, 18, 19}. Additionally, we consider a sequence of settings in which the horizon

ranges from T = 1 to T = 5 × 106, with 100 independent replications of each setting. For each

simulation, the change point τ is drawn uniformly at random over the period [T ]. Consequently,

for t < τ , the attraction parameters are given by νt = ν̂1, and after τ , they switch to νt = ν̂τ .
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(a) Regret of the Algorithm 3.
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(b) Regret of Algorithm 6 (in Appendix A).
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(c) Regret of Algorithm 2.
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(d) Regret of Algorithm 4 (in Appendix A).

Figure 10: Regret for assortment strategies when preferences change abruptly at a uniformly random time τ ∈ [T ].
We compute the average regret (in black), and 95% confidence interval for the mean (in shading) over 100 instances.
Figure 10a and Figure 10c show the regret of the passive and active monitoring-then-learn policies, respectively, when
the post-change preferences are unknown. Similarly, Figure 10b and Figure 10d present the regret of the passive and
active monitoring-then-learn policies, respectively, when the post-change preferences are known.

We compare four algorithms designed for abrupt changes in preferences: Algorithms 2 and 3

address cases where the retailer has very limited prior knowledge on the post-change preferences.

In contrast, Algorithms 4 and 6, detailed further in Appendix A, are based on the assumption that

the retailer has full knowledge of these new preferences. Moreover, this scenario is such that the

change is passively detectable as it affects the attraction parameters of the products within the
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pre-change optimal assortment. As a result, Algorithms 3 and 6 are both applicable in this setting.

To facilitate a fair comparison among these algorithms, we deliberately exclude the regret

related to the learning phase of the preferences once the change is detected. This methodological

choice allows us to isolate the opportunity cost of detecting preferences shifts and examine whether

strategically leveraging the structure of the change offers meaningful advantages for the retailer.

Figure 10 illustrates the regret associated with each of these four algorithms.

Discussion. Our findings reveal that the passive assortment strategy presented in Algo-

rithm 3, which does not presume exact knowledge of the post-change preferences, yields a per-

formance (Figure 10a) nearly equivalent to the passive strategy assuming complete knowledge from

Algorithm 6 (Figure 10b). Comparing the two, we observe that the retailer incurs only a minor

performance loss from not knowing the post-change preferences (provided that the change can be

detected passively). Note that the effectiveness of Algorithm 3 depends on the separability param-

eter, which implicitly reflects some prior knowledge about the magnitude of the environment.

In contrast, when the retailer is unaware that the change occurs within the pre-change optimal

assortment and adopts an active exploration strategy as described in Algorithm 2, a large increase

in regret is observed (Figure 10c). Under these conditions, the necessity of engaging in active

exploration results in greater regret compared to the passive strategies, which can be explained

by the frequency of exploration (whose batches size are of order of O(
√
T ) in the active strategy).

Accordingly, when a change occurs, the policy may first have to end the exploitation batch, and

then start an exploration one before detecting the change. This in turn drives the regret upward.

Moreover, Algorithm 4, which is designed for known post-change preferences, exhibits an im-

proved performance (Figure 10d) compared to its counterpart, Algorithm 2 (Figure 10c). This gain

has two sources. First, Algorithm 2 incurs higher regret due to broader exploration as it must

offer all assortments from the set of test assortments, while Algorithm 4 can focus on a single one,

reducing both exploration and regret. Second, their statistical tests differ: Algorithm 2 relies on

estimated purchase probability gaps and requires a minimum sample size, whereas Algorithm 4 uses

a more “efficient” likelihood ratio test. These distinctions are captured in Proposition 6, where the

regret bound only applies for sufficiently large T .

Next, we examine a situation in which the retailer does not anticipate an abrupt change in

preferences and adopts the restart-and-learn policy from Algorithm 1. This policy incorporates the

assortment strategy A from Agrawal et al. (2019), with ∆ chosen as in Corollary 1. As depicted in

Figure 11a, the regret incurred by this policy is higher compared to the strategies specifically de-
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Figure 11: Regret (and its scaled version) for the restart-and-learn policy π(A,∆) described in Algorithm 1. We
compute the average regret (in black), and 95% confidence interval for the mean (imperceptible) over 100 instances.

signed for abrupt changes in preferences, shown in Figure 10. However, caution should be exercised

in directly comparing regret values, since the opportunity cost associated with learning post-change

preferences has been omitted from the analyses of abrupt-change-specific algorithms. Yet, the re-

gret of Algorithm 1 grows at a rate of O(T 3/4), a trend we observe in Figure 11b. Collectively,

these observations highlight the strategic benefit of leveraging structural insights on preferences.

To summarize, our findings provide a significant insight for retailers anticipating an abrupt

change in preferences. Focusing on relatively simple detection procedures, as opposed to restart-

and-learn policy, improves performance by enabling the retailer to rapidly move away from obsolete

assortments. This advantage is particularly pronounced in scenarios in which disruptive events shift

customers’ preferences away from the products offered within the pre-change optimal assortment.

Overall, our analysis demonstrates that retailers can significantly reduce the regret by

proactively implementing change detection methods and capitalizing on structural

information regarding the change in preferences.

7 Conclusion

Saving retailers from the boiling market. Customers with evolving preferences pose a

challenge to any retailer, particularly when considering the opportunity costs involved. By being

confronted to these changing preferences, retailers risk a fate akin to the boiling frog—gradually

missing vital market changes until it becomes too late. Our analysis reveals that operating in a

dynamic market carries an inherent opportunity cost: a premium for delayed adaptation or inac-

tion. Nonetheless, we offer insights on designing an assortment strategy to operate in this dynamic

market. By periodically restarting their learning process (essentially reapplying a policy tailored for

time-homogeneous preferences) retailers can avoid reliance on outdated preferences and, in doing

so, sidestep the peril of becoming the unwitting frog in a boiling market.
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If retailers gain external insights into the dynamics of customers’ preferences—including the

velocity, magnitude, and detectability of change—then they can leverage this information to refine

their assortment strategies. In our study, we focus on scenarios in which an abrupt shift in prefer-

ences is anticipated by the retailer. When the magnitude of change is unknown in advance, retailers

can preserve their adaptability by regularly resetting their learning process. Conversely, if market

intelligence or expert insights indicate a sudden and large change in preferences, then retailers can

preemptively embed change-detection mechanisms into their assortment strategies. This proactive

approach mitigates the opportunity cost especially when such changes are passively detectable.

Managerial implications. Our findings highlight the importance of moving beyond assort-

ment planning designed for time-homogeneous customers’ preferences and adopting strategies that

adapt to dynamic environments. In such markets, external information plays a crucial role in help-

ing retailers refine their assortment strategies. Equally critical is achieving the appropriate balance

between exploration and exploitation. Retailers should allocate resources for exploratory assort-

ments designed to proactively identify emerging preferences without jeopardizing revenue streams.

Striking this balance allows retailers to avoid missed opportunities at limited costs. Ultimately, re-

tailers must discard the assumption that any assortment, once set, can remain indefinitely effective.

Success in contemporary retail markets demands continuous vigilance and a proactive approach to

refining assortments that resonate with consumers’ ever-changing preferences.

Future research. Looking ahead, a key challenge lies in developing test assortments that

can more effectively detect abrupt changes in preferences. While our model of preferences is quite

general, introducing more structure, as for example adopting a specific choice model would allow to

leverage this structure to design test assortments to mitigate the opportunity costs of delayed adap-

tation. Further improvements in assortment planning can be achieved by integrating contextual

information—such as macroeconomic trends, demographic changes, or social media sentiments—to

enhance strategy effectiveness. For instance, insights from one market might inform assortment

decisions in another (Elberse and Eliashberg 2003). Additionally, incorporating realistic consumer

behaviors, including seasonality effects (Caro et al. 2014) and brand loyalty (J. N. Sheth 1967),

would help bridge the gap between theoretical research and practical retail applications.
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Notes
1For accuracy, a frog with a brain starts being agitated when the temperature reaches 25°C (Lewes 1873).

2Formally, Kt(S) =
∑

i∈S∪{0}
pi(S, F

t)
(
log pi(S, F

t)− log pi(S, F
t−1)

)
.

3Most of our performance bounds exhibit a dependence on a constant C. This constant should not be interpreted

as having the same value across all results. For the specific form of the constant and its dependence on the parameter

settings, please refer to the proofs of the corresponding results.

4By abuse of notation, p(·, θ) denotes the purchasing probability of the distribution parameterized by some θ.

5This observation follows from that x → x
1+x

is an increasing function over (0,+∞).
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Appendix A The value of known post-change preferences

In this section, we discuss a setup similar to the one from Section 5 with abruptly changing

preferences. However, the retailer is now assumed to know the post-change preferences. Similar

assumptions have been studied in the context of pricing under dynamic demand models (Besbes

and Zeevi 2011; Besbes and Sauré 2014). Our goal, first, is to understand how access to post-change

preferences can aid the retailer in designing more effective assortment strategies. Furthermore, this

setting serves as a benchmark for comparison with the more challenging case presented in Section 5,

where post-change preferences are assumed to be unknown to the retailer.

Since the retailer is assumed to know both the pre- and post-change preferences (when a change

occurs), the preferences F (N) ∈ FA are fully characterized by the pair (F 1, F τ ) and the change

time τ . Throughout this section, we refer to F 1 and F τ , always assuming (implicitly) that there

exists some preferences F (N) ∈ FA that satisfy F t = F 1 for all t < τ and F t = F τ for all t ≥ τ . We

also denote by FA(F 1, F τ ) the subset of sequences in FA with pre- and post-change preferences

given by F 1 and F τ , respectively. We adopt the same assumptions and notational conventions

introduced in Section 5.1. Additionally, we assume that FA is such that the following quantity:

ϑ ≡ ϑ(FA) := sup
{∣∣ log pi(S, F 1)− log pi(S, F

τ )
∣∣ : ∀ i ∈ S ∪ {0}, S ∈ S, F (N) ∈ FA

}
,

satisfies ϑ < ∞ so that the magnitude of the environment is bounded above uniformly. This

assumption is equivalent to assuming that the probability of purchase for any product cannot be

made arbitrarily small by the environment.

A.1 Passively undetectable changes

We consider passively undetectable changes as first discussed in Section 5.2. Accordingly, we

assume that preferences F (N) belong to FU , so that the pre- and post-change preferences F 1 and F τ

cannot be distinguished by only offering the pre-change optimal assortment S∗(F 1).

A.1.1 A fundamental lower bound on the achievable performance

We establish a lower bound on the regret that any admissible policy must incur. The proof

follows the same line of reasoning as in the setting with unknown post-change preferences and is

based on a constructive change-point argument. Specifically, we distinguish between assortment

strategies that are guaranteed to sufficiently explore and those that fail to do so. For each case, a

change point is constructed in an adversarial manner to establish the lower bound on regret.

38



Proposition 7. There exists some finite constant C ≡ C (γ, ϑ) > 0, such that, for T ≥ 2:

R̃
(
FU , T

)
≥ C

√
T .

The lower bound in Proposition 7 shows that knowledge of the post-change preferences does not

alter the regret’s dependence on the number of customers T . The regret remains of the same order

as in Proposition 3, where the post-change preferences are unknown, and the difference between the

two results lies in the constant in front of the term
√
T . Hence, the regret incurred by any policy,

whether due to learning static preferences (Agrawal et al. 2019) or detecting a change, remains of

the same order in the worst-case.

A.1.2 A near-optimal assortment strategy

We specialize the active-monitoring-then-learn policy from Algorithm 2 to the setting in which

the post-change preferences F τ are known, as described in Algorithm 4. This specialization mani-

fests in two key aspects. First, the algorithm leverages F τ by performing a log-likelihood ratio test

to determine whether the observed data is more likely to have been generated by F 1 or F τ , condi-

tional on a given assortment S ∈ S. Second, once a change is detected, the algorithm immediately

switches to offering the post-change optimal assortment. The only requirement we impose on the

test assortment S is that it discriminates F τ from F 1.

Algorithm 4 Active-monitoring-then-optimize policy π
(
D,F 1, F τ , S

)
Input: A constant D > 0, two distributions F 1 and F τ , and a test assortment S

Initialize: Set detect = False, t = 0, ∆o := D
√
T , ∆e := D log T

while detect = False and t ≤ T do

Offer Su = S∗(F 1) for u = t+ 1, . . . , t+∆o (exploit pre-change assortment)

Offer assortment S to ∆e customers

if
∑t+∆o+∆e

u=t+∆o+1 log piu(S
u, F 1)− log piu(S

u, F τ ) < 0 then

detect = True (change detected)

t = t+∆o +∆e

Offer S∗(F τ ) to customers t+ 1, . . . , T (post-change policy)

The constant D, used as an input to Algorithm 4, can be determined by specifying a vector α =

(αI, αII), in addition to the assortment S used within the policy. The vector α encodes the desired

Type I and Type II error levels for the statistical test employed in the change detection step. The

computation of D ≡ D(α, S) is detailed in the proof of Proposition 8, which establishes an upper

bound on the regret of Algorithm 4, provided that the preferences F 1 and F τ are distinguishable
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under the assortment S. Specifically, the assortment S, which we refer to as a test assortment,

must be chosen such that the pre- and post-change preferences differ when conditioned on S.

Proposition 8. For α := (αI , αII), S ∈ S, D ≡ D(α, S), let π ≡ π(D,F 1, F τ , S) be the policy

defined in Algorithm 4. Then, there exists a constant C ≡ C(α, S) > 0, such that, for T ≥ 2:

Rπ
(
FU (F 1, F τ )

)
≤ C log T

√
T .

The upper bound on regret in Proposition 8 aligns with the lower bound in Proposition 7,

differing only by a logarithmic factor. In other words, Algorithm 4 achieves near-optimal perfor-

mance. However, the choice of the assortment S plays a central role in the policy’s effectiveness.

An inappropriate choice may lead to a high value of C in Proposition 8 and therefore to higher

regret in the worst case. We briefly address the selection of such assortment in Section A.1.3.

Example 6. We consider a sequence of settings in which the horizon T ranges from 1 to 10000

with τ = T . Customers’ preferences follow an MNL model with N = 10 products and K = 4, where

we set wi = 1 for all products. The experiment is repeated over 500 randomized instances. The

attraction parameters are set as follows: νa0 = νb0 = 1, and for i ∈ {1, 2, 9, 10}, we set νai = 0.25+ ζ,

and νai = 0.25 otherwise. Similarly, νb = 0.25 + 2ζ, for i ∈ {3, 4, 5, 6}, and νbi = 0.25 otherwise,

with ζ = 2.75. The Type I and Type II error probabilities are both controlled using αI = αII = 0.01.

The two preferences differ only for products 3 to 6, with the pre-change and post-change optimal

assortments given by S∗(F 1) = {1, 2, 9, 10} and S∗(F τ ) = {3, 4, 5, 6}, respectively. Thus, the

preferences are guaranteed to belong to the subset FU . ■
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Figure 12: Regret of the active-monitoring-then-optimize policy π
(
D,S, F 1, F τ

)
applied to the sequence of settings

from Example 6 in which the horizon T ranges from T = 1 to T = 10000 with τ = T . We compute the average regret
(in black), and the 95% confidence interval for the mean (imperceptible) over 500 instances. The policy controls the
Type I and II errors at (αI, αII) = (0.01, 0.01). Also, S := S∗(F τ ) is used as the test assortment.

The upper bound on the regret of Algorithm 4 from Proposition 8 exhibits the same dependence

on T as the bound derived for the case in which the post-change preferences are unknown (see
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Proposition 4). Specifically, the regret is of order O(
√
T log T ), a trend that is empirically supported

by the results presented in Figure 12. The step-wise pattern observed in the figure arises from the

structure of the policy, which partitions the selling horizon into exploratory sub-segments. As T

increases, the number of these segments grows, thereby contributing incrementally to the regret.

The principal advantage of knowing the post-change preferences F τ lies in its effect on the

constant terms in the regret bound. In this case, the policy can forgo the costly hypothesis testing

procedure that would otherwise require offering a large number of assortments to collect sufficient

purchasing data. Instead, it suffices to offer a single well chosen assortment.

A.1.3 Finding a test assortment

In this section, we discuss approaches for selecting a “good” test assortment S to be used in

Algorithm 4. Specifically, a test assortment should balance the expected revenue maximization

and the ability of the retailer to detect the change based on the information collected from that

assortment. Solving this trade-off at optimality in its full generality is challenging and beyond the

scope of this paper. Instead, we propose evaluating candidate assortments based on two key criteria:

(i) separability, i.e., the retailer may prefer assortments that maximize the statistical separation

between the pre- and post-change preferences, thereby aiming for faster change detection; (ii) short-

term revenue, i.e., the assortment may be selected to maximize a single-period expected revenue,

thus aiming to reduce regret in the event that no change occurs.

Separability. We propose an approach to find an assortment that maximizes the difference

between the pre- and post-change preferences. To proceed, we introduce a subset of feasible assort-

ments Λ ⊆ S. We then define a parametric optimization problem to find an assortment S ∈ Λ that

maximizes the worst-case separability between the pre- and post-change preferences. Formally:

zSEP(Λ) := max
S∈Λ

min
i ̸=j∈{1,τ}

K(F i , F j ; S).

Note that the KL divergence is not symmetric (Thomas and Joy 2006); thus, worst-case separability

refers to the smallest divergence between the pre- and post-change preferences, in either direction.

Short-term revenue. The second proposed approach aims to identify an assortment that can

distinguish between pre- and post-change preferences, but with a focus on minimizing a single-

period regret. To proceed, we introduce a subset of feasible assortments Λ ⊆ S. We then define

a parametric optimization problem that selects an assortment S ∈ Λ, which minimizes the worst-

case regret (with respect to either F 1 or F τ ), while ensuring that the two preferences remain
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distinguishable under the chosen assortment. Specifically:

zREV(Λ) := min
S∈Λ

{
max

F∈{F 1,F τ}
{r(S∗(F ), F )− r(S, F )} : ∥p(S, F 1)− p(S, F τ )∥∞ > 0

}
.

In words, the formulation above selects an assortment that minimizes the worst-case regret for a

single period while still being able to differentiate the pre- and post-change preferences based on

the information collected by offering that assortment.

Enumerating all assortments to solve either zSEP(S) or zREV(S) would return an optimal assort-

ment with the desired properties (optimizing either separability or short-term revenue). However,

such an exhaustive approach can be impractical due to the combinatorial size of S. To address this

issue, we limit our attention to an heuristic approach in order to derive a feasible solution to these

programs. In particular, we propose a local-search type of approach described in Algorithm 5.

Algorithm 5 Find test assortment T (S0,K, z)

Input: An assortment S0, an assortment size K and parametric program z : 2S → R≥0

for k ∈ [K] do

Λ = Nk(S
0)

Compute z(Λ) (solve parametric program)
if z(Λ) > 0 then (test assortment detected)

Find the corresponding optimal assortment S∗ (informative assortment)

Stop and return S∗

Return: S∗

Algorithm 5 starts from an initial assortment S0 ∈ S and explores its k-flip neighborhood for

k ∈ [K]. The k-flip neighborhood is defined as Nk(S
0) := {S ∈ S : ∥S−S0∥1 = k}, representing all

assortments that differ from S0 by exactly k products. These assortments are obtained by replacing

items from S0 with items not currently in the assortment. If no suitable assortment is found in the

current neighborhood, then k is incremented and the search continues until an “informative” assort-

ment is identified. As k increases, the search space expands and eventually satisfies NK(S0) = S.

Lemma 1. For S0 ∈ S, K > 0, z ∈ {zSEP, zREV}, let T ≡ T (S0,K, z) denote the procedure as

specified in Algorithm 5. Then, the following properties hold: (i) T returns a feasible assortment

S∗ ∈ S such that z({S∗}) > 0; (ii) T terminates in a finite number of steps, with a worst-case

computational complexity of order O(NK).

Lemma 1 establishes theoretical guarantees for the procedure described in Algorithm 5. Specif-

ically, the algorithm is guaranteed to produce an assortment that satisfies the requirements of the
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assortment strategy described by Algorithm 4. In the next example, we illustrate the numerical

performances for the two approaches.

Example 7. We consider a retailer offering N = 10 products, each with equal profit wi = 1,

and we set T = 10000. Preferences follow an MNL model, with an abrupt change occurring

at τ ∈ {0, 2500, 5000, 7500, 10000}. Each experiment is randomized over 500 instances. We fix

ν10 = ντ0 = 1. For products i ∈ N , we set ν1i ∼ Uniform(0.1, 1). Then, we use ντi ∼ Uniform(1, 2),

for all products except for those in S∗(F 1), where we set ντi = ν1i . The Type I and II errors are

controlled at level αI = αII = 0.1. We compute the regret and the delay of detection (i.e., time at

which the change is detected minus the time of change τ) for Algorithm 4, using the test assortment

selected by Algorithm 5, where we use S0 = S∗(F 1) as an initial assortment and z ∈ {zSEP, zREV}.

The results for the regret are shown in Table 2 and those for the delay in Table 3. ■

z
τ

0 2500 5000 7500 10000

zSEP 370 (±17) 201 (±15) 211 (±13) 183 (±9) 34 (±4)

zREV 641 (±28) 397 (±25) 304 (±17) 200 (±8) 12 (±4)

Table 2: Regret achieved by Algorithm 4 when applied to the setting of Example 7. The test assortment used in the
assortment strategy is obtained using T (S0,K, z) for S0 = S∗(ν1) and z ∈ {zSEP, zREV} as described in Algorithm 5.
The table reports the mean regret across 500 instances, with 95% confidence interval for the mean in parentheses for
various time change τ ∈ {0, 2500, 5000, 7500, 10000}. The lowest regret is shown in bold.

Table 2 indicates that using zSEP as a subroutine for T leads to lower regret over the horizon

compared to using zREV. These experiments suggest that optimizing for separability (i.e., rapid

change detection) can lead to improved long-term performance. As τ increases, however, the differ-

ence in regret between the two approaches diminishes. Notably, in a special case in which no change

occurs (τ = T ), optimizing short-term revenue via zREV results in lower regret than optimizing sep-

arability. This outcome is intuitive, as the strategy ends up exploring “for nothing” when no change

occurs. As a result, choosing an assortment that minimizes single-period regret (such as the one

selected by zREV) becomes the preferable option. On the other hand, Table 3 shows that selecting

the test assortment using zSEP prioritizes separability and improves detection performance. Indeed,

we observe shorter detection delays under zSEP compared to zREV.

We do not claim that one approach—optimizing revenue via zREV or optimizing separability

via zSEP—is universally superior. Rather, our admittedly limited experiments with Example 7

illustrate that each strategy can perform well in some environments. Moreover, we did not observe

this pattern across all instances. In some cases, optimizing one objective unexpectedly led to better
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z
τ

0 2500 5000 7500 10000

zSEP 3682 (±199) 2080 (±174) 2022 (±129) 1553 (±72) 0 (±0)

zREV 6269 (±267) 4042 (±252) 3001 (±151) 1946 (±68) 0 (±0)

Table 3: Delay achieved by Algorithm 4 when applied to the setting of Example 7. The test assortment used in the
assortment strategy is obtained using T (S0,K, z) for S0 = S∗(ν1) and z ∈ {zSEP, zREV} as described in Algorithm 5.
The table reports the mean regret across 500 instances, with 95% confidence interval for the mean in parentheses for
various time change τ ∈ {0, 2500, 5000, 7500, 10000}. The lowest regret is shown in bold.

outcomes for the other. Investigating further the question of finding a “good” test assortment

presents an interesting direction for future research that we aim to explore in the future.

A.2 Passively detectable changes in preferences

In this section, we consider a setting in which the retailer knows that changes can be detected

passively, i.e., F (N) ∈ FD. Accordingly, F 1 and F τ can be distinguished based on the sales data

collected by offering the pre-change optimal assortment S∗(F 1). However, in contrast to Section 5.4,

we assume that the retailer knows the post-change preferences F τ .

A.2.1 A fundamental lower bound on the achievable performance

We now derive a fundamental performance bound for any assortment strategy when post-change

preferences are assumed to be known and passively detectable.

Proposition 9. There exists constants C ≡ C (γ, ϑ) > 0 and t ≡ t (γ, ϑ) > 0, such that, for T ≥ t:

R̃∗ (FD, T ) ≥ C log T.

Proposition 9 establishes a regret lower bound in the setting where the post-change preferences

are known. This result parallels that of Besbes and Zeevi (2011), who study dynamic pricing

under abrupt demand shifts with known post-change demand. Since having access to additional

information cannot degrade performance, the lower bound from Proposition 9 remains valid in the

unknown-preferences setting discussed in Proposition 5.

A.2.2 An efficient passive-learning assortment policy

Next, we present a variation of the passive-monitoring-then-learn policy from Algorithm 3 which

makes use of the post-change preferences. Yet, the core idea remains the same: the retailer initially

offers the pre-change optimal assortment to passively monitor sales data. However, as F τ is known

in this setting, we use a log-likelihood ratio test for change detection. If a change in preferences is

detected, then the retailer offers the post-change optimal assortment; in contrast to Algorithm 3,

there is no need to relearn preferences.
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Algorithm 6 Passive-monitoring-then-optimize policy π
(
D,F 1, F τ

)
Input: A constant D > 0, two distributions F 1 and F τ , respectively

Initialize: Set detect = False, t = 0, ∆ = D log (T )

while detect = False and t < T do

Offer Su = S∗ (F 1
)
for u = t+ 1, . . . , t+∆ (exploit pre-change assortment)

if
∑t+∆

u=t+1 log piu(S
∗ (F 1

)
, F 1)− log piu(S

∗ (F 1
)
, F τ ) < 0 then

detect = True (change detected)

Set t = t+∆

Offer St = S∗(F τ ) to customers t+ 1, . . . , T (post-change policy)

The constant D, required as an input for Algorithm 6, can be naturally determined through

the selection of two parameters αI and αII, which specifies the Type I and II errors level for the

log-likelihood test used in the policy. The detailed derivation of this constant can be found in the

proof of Proposition 10 which provides an upper bound for the regret of Algorithm 6.

Proposition 10. For α = (αI, αII) ∈ (0, 1)2 and D ≡ D(α) > 0, let π ≡ π
(
D,F 1, F τ

)
be the policy

defined in Algorithm 6. Then, there exist finite constants C1 ≡ C1(αI) > 0 and C2 ≡ C2(αII) > 0,

such that, for T ≥ 2:

Rπ
(
FD(F 1, F τ )

)
≤ C1 + C2 log T.

The upper bound above matches the lower bound from Proposition 9 up to a constant. If a

policy A designed to learn static preferences achieves a regret of order O(log T ), then the upper

bound from Proposition 6 when the post-change preferences are unknown is in the same order

as the one from Proposition 10. In the next example, we provide a numerical illustration of the

performance of our policy from Algorithm 6.

Example 8. We consider a sequence of settings in which the time horizon T ranges from 1 to

10000, with τ = 1. Customer preferences follow an MNL model with N = 10 products and K = 4,

where wi = 1 for all products. Results are averaged over 500 randomized instances. The attraction

parameters are set as follows: νa0 = νb0 = 1, and for i ∈ {1, 2, 9, 10}, we set νai = 0.25 + ζ, and νai =

0.25 otherwise. Similarly, νbi = 0.25 + ζ for i ∈ {3, 4, 5, 6}, and νbi = 0.25 otherwise, with ζ = 2.75.

The Type I and II errors are controlled using αI = αII = 0.01. The optimal assortments before

and after the change are S∗(F 1) = {1, 2, 9, 10} and S∗(F τ ) = {3, 4, 5, 6}, respectively. Thus, the

resulting preferences are in FD. ■
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Figure 13: Regret of the passive-monitoring-then-optimize policy π
(
C,F 1, F τ

)
applied to the sequence of settings

from Example 8 in which the horizon T ranges from T = 1 to T = 10000, where we set τ = 1. We compute the
average regret (in black), and the 95% confidence interval for the mean (in shading) over 500 instances. The policy
controls the Type I and II errors at (αI, αII) = (0.01, 0.01).

The regret of the passive-monitoring-then-optimize policy, as shown in Figure 13, increases log-

arithmically with T . This empirical observation is consistent with Proposition 10, which establishes

a logarithmic regret bound when the post-change preferences are known. Together, Figure 13 and

Proposition 10 show that having access to the post-change preferences influences only the leading

constant of order log T in the regret, without improving the rate of growth in T .
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Appendix B Implementation details of Section 6

This section outlines the setup used for the case studies from Sections 6.2 and 6.3, including

our parameter choices and some adaptations of our algorithms to handle limitations from the data.

Section 6.2. We implement Algorithm 1 using the policy by Agrawal et al. (2019) as a

subroutine for learning static preferences. To calibrate our assortment strategy, we fix the value

taken by the magnitude of the environment to M(F , T ) = 5× 10−2. Following Corollary 1, we use

a sub-segment size of ∆ = ⌈T 1/2 · M(F , T )1/2⌉, as an input to our assortment strategy.

Section 6.3. To isolate detection performance, we exclude regret due to estimating post-

change preferences. Instead of empirical averages, we compute regret using the difference in expected

revenue under the oracle and the implemented policy. For false alarms, when the change is detected

prematurely, we compute the one-period regret as r(S∗(ν1), ν1) − r(S∗(ντ ), ν1). Note that the

scenario in which a false alarm leads the retailer to learn the pre-change (rather than post-change)

preferences is not captured in our current regret calculation. However, we do address this possibility

in both our theoretical results and the numerical examples presented throughout the paper.

All policies (based on a change detection approach) introduced in this paper partition the

horizon into sub-segments dedicated to either exploration or exploitation. The optimal size of

these segments depends on the similarity between the pre- and post-change preferences. Loosely

speaking, smaller changes require longer segments of exploration to ensure reliable detection (we

refer to the corresponding sections and proofs for further details). In our setting, the pre- and

post-change preferences, obtained by calibrating MNL models on the dataset, are close to each

other. This closeness results in a low KL divergence between the preferences of order O(10−3),

which, in turn, necessitates the use of large sub-segments for exploration of order at least O(106).

For the active-monitoring-then-learn policy (Algorithm 2), we set κ to the infinite-norm between

the pre- and post-change preferences conditional on the assortment S∗(ν1). This modification im-

proves the stability of the statistical test used within the procedure. We use sub-segment sizes

D1

√
T for exploitation and D2 log T for exploration, with D1 = 100 and D2 = 5,000. We con-

struct the set of test assortments using the partitioning approach from Section 5.3.3. The same

principle applies for the passive-monitoring-then-learn policy (Algorithm 3). We set κ = ε and use

sub-segment sizes D2 log T with D2 = 5,000. For both Algorithm 4 and Algorithm 6, we adopt the

same sub-segment sizes as for the unknown-preferences setting. Moreover, we use Algorithm 5 with

initial assortment S∗(ν1) and zREV to obtain the test assortment used as an input of Algorithm 4.
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Electronic Companion

(Saving Kermit: Dynamic Assortment Planning in a Boiling Market)

Notations. Let F and G be probability distributions defined on a common discrete probability

space (Ω,B,P). The KL divergence between F and G is defined as follows (Thomas and Joy 2006):

K(F,G) :=
∑
ω∈Ω

F (ω) log
F (ω)

G(ω)
.

In particular, throughout this work, we often refer to the KL divergence between two distributions

conditional on an event S. Correspondingly, given some event S we denote by K(F,G ; S) the the

KL divergence between the conditional distributions F (· | S) and G(· | S). Moreover, to measure

the variability of a given sequence of customers’ preference F (N) ∈ F , we use the notation:

Kt(S) =
∑

i∈S∪{0}

pi(S, F
t)
(
log pi(S, F

t)− log pi(S, F
t−1)

)
,

as originally introduced in Section 4.

The infinity norm is denoted by ∥ · ∥∞. Expectations taken with respect to the probability

measure P are denoted explicitly as EP. Some statements may be understood as holding almost

surely (i.e., with probability 1 under the appropriate probability measure), although we omit explicit

references for notational simplicity. We write an = o(bn) to mean that an/bn → 0 as n→ +∞, and

an = O(bn) if there exists a constant C > 0 such that |an| ≤ C|bn| for sufficiently large n. The

indicator function 1(·) takes the value 1 if and only if its argument is true. Throughout the proofs,

the terms environment and nature are used interchangeably.

E.C.1 Proofs for Section 4

We present detailed proofs of the theoretical results established in Section 4. Our analysis is

conducted under the fundamental assumption that customers’ preferences evolve over time, with

changes bounded according to the magnitude M(F , T ), as formally introduced and discussed in

Section 4.1. We begin by rigorously establishing a lower bound on the regret that any admissible

policy can achieve, as stated in Theorem 1. We then derive an upper bound on the regret incurred

by our proposed restart-and-learn policy, thereby proving the performance guarantee stated in

Theorem 2. Both results appear in Sections 4.2 and 4.3, respectively.

Proof of Theorem 1. For T ≥ 2 be the time horizon. We define MT ≡ M(F , T ) as the magnitude

of the changes in customers’ preferences which belong to F . Moreover, if T := o(MT ), then one
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can construct an instance for which no policy can achieve a sub-linear regret. Therefore, without

loss of generality, we assume that 1 < MT < 1
4T . In addition, we assume that the profit vector

w ≡ (wi : i ∈ N ) satisfies wi = 1 for all i ∈ N . This assumption entails no loss of generality, since

the profit terms in the regret can be lower bounded by min{wi : i ∈ [N ]}.

We partition the selling horizon [T ] into sub-segments of size ∆ ∈ [T ], defined as ∆ :=

⌊T 1/2M
−1/2
T ⌋. Let T̃−1 := ⌈T/∆⌉−1 denote the number of sub-segments, denoted by F1, . . . ,FT̃−1.

Each sub-segment has cardinality ∆, except possibly FT̃−1, which may be smaller. For simplicity,

and without loss of generality, we fix the number of products in each assortment to K = 1. Our

construction can be extended to general K but becomes more technically involved. We then fix an

arbitrary admissible policy π ≡ (ψt(Ht−1))
T
t=1 ∈ P, where ψt maps the past history to an assortment

from S. To simplify notation, we omit the explicit dependence of π on the filtration (Ht)
T−1
t=0 .

We establish a lower bound on the achievable regret for any arbitrary policy π through a con-

structive approach. Specifically, we demonstrate this bound by constructing an adversarial instance

that forces any policy to incur the minimal regret stated in the proposition. To formalize this result,

we first define a subset of preferences as follows:

M′
:=
{
F (N) : F t ∈ {Fa, Fb}, F t = F t−1 ∀ t /∈ {∆, 2∆, . . . , T̃∆}

}
,

where Fa and Fb are two MNL choice models with attraction parameters given by the (N + 1)-

dimensional vectors νa, and νb, respectively, which, in turn, are defined as follows:

νa :=
(
1,

1

2
,
1

4
, . . . ,

1

4
,
1

2
− ζ
)

and νb :=
(
1,

1

2
,
1

4
, . . . ,

1

4
,
1

2
+ ζ
)
,

where ζ := 1
4(MT /T̃ )

1
2 < 1

4 . Also, ν
a
0 = νb0 = 1 are the parameters for the non-purchase decision.

Accordingly, we obtain the following lower bound on the difference in expected revenue for a

single sale between the assortment {N} and any other assortment S ∈ S, with S different from {N}:

r({N}, Fb)− r(S, Fb) ≥ min {pN ({N}, Fb)− pi(S, Fb) : i ∈ [N − 1]} ≥ ζ. (E.C.1)

A similar bound holds for r({1}, Fa)− r(S, Fa) when S is different from {1}.

Step 1 (M′ is well-defined). To begin, we show that customers’ preferences belonging to M′

have a cumulative variability bounded above by MT . By assumption, each feasible assortment has

cardinality K = 1, and hence, S ≡
{
{i} : i ∈ [N ]

}
. Accordingly, by the definition of the attraction

parameters νa and νb, one can verify that for all feasible assortments S ̸= {N}, the KL divergence

satisfies K (Fa, Fb ; S) = 0. Indeed, conditional on S ̸= {N}, the distributions Fa and Fb coincide.

However, conditional on the assortment S = {N}, we have that K (Fa, Fb ; S) ̸= 0 and that the
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following sequence of inequalities holds:

K(Fa, Fb ; {N}) = K(Fb, Fa ; {N}) = 2ζ log
(1 + 2ζ

1− 2ζ

)
≤ 2ζ

(1 + 2ζ

1− 2ζ
−1
)
=

8ζ2

1− 2ζ

(a)

≤ 16ζ2
(b)

≤ MT /T̃ ,

where (a) follows from that ζ ≤ 1
4 , and (b) follows from the definition of ζ.

Next, we fix some preferences F (N) ∈ M′
arbitrarily, where the customers’ preferences on each

sub-segment F1 to FT̃−1 are either Fa or Fb with probability 1/2 each. Therefore, since F (N) ∈ M′
,

we obtain the following upper bound on the variability of theses preferences:

T∑
t=2

max
{
Kt(S) : S ∈ S

}
≤

T̃−1∑
j=1

MT

T̃
≤MT .

Thus, preferences F (N) ∈ M′
are guaranteed to have a variability that is bounded above by MT .

Step 2 (Measuring the deviation between scenarios). We fix two customers’ preferences

F,G ∈ M′
arbitrarily. Then, we denote by Pπ,Fj

F the probability distribution of customer’s pur-

chase decisions within the sub-segment Fj , where j ∈ [T̃ − 1], whenever the preferences are given

by F and the assortment policy is π. Next, we introduce Zj , the random vector that corresponds

to the customer’s purchase decisions within sub-segment Fj .

We define zj ∈ {0, 1}|Fj |×N , such that zjt,i = 0, if i /∈ ψt, and we derive a closed-form formula

for the probability distribution of customer’s purchase decisions. The following equality holds:

Pπ,Fj

F

[
Zj = zj

]
=
∏
t∈Fj

Pπ,Fj

F

[
Zjt = zjt

]
=
∏
t∈Fj

F t(zj | ψt),

where similar observation remains valid whenever the preferences F are replaced by G.

Then, the closed-form formula for the probability distributions of customer’s purchase decisions

is used to measure how these two scenarios differ from each others. In particular, we compute the

KL divergence between distributions that are induced by the two preferences F and G. Formally:

K
(
Pπ,Fj

F ,Pπ,Fj

G

)
:= E

P
π,Fj
F

[
log
(Pπ,Fj

F

[
Z
]

Pπ,Fj

G

[
Z
])]

= E
P
π,Fj
F

[
log
(∏t∈Fj

F t(Zt | ψt)∏
t∈Fj

Gt(Zt | ψt)
)]

= E
P
π,Fj
F

[ ∑
t∈Fj

log
(F t(Zt | ψt)
Gt(Zt | ψt)

)]
=
∑
t∈Fj

EF t

[
log
(F t(Zt | ψt)
Gt(Zt | ψt)

)]
(a)
=
∑
t∈Fj

EF t

[
log
(F t(Zt | {N})
Gt(Zt | {N})

)1
(
ψt = {N}

)]
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(b)

≤ 2ζ log
(1 + 2ζ

1− 2ζ

) ∑
t∈Fj

EF t

[
1
(
ψt = {N}

)]
≤ 2ζ

(1 + 2ζ

1− 2ζ
− 1
)
∆ ≤ 8ζ2

1− 2ζ
∆

(c)

≤ 16ζ2∆
(d)

≤ MT∆
2/T ≤ 1 ≡ β,

where (a) follows from that F,G ∈ M′
, and the definition of Fa and Fb. Then, (b) follows from the

definition of νa and νb. Also, (c) holds since ζ := 1
4(MT /T̃ )

1
2 < 1

4 . Moreover, (d) follows from the

definition of ζ. Finally, we define β ∈ R as β = 1 throughout the remainder of the proof.

Step 3 (Hypothesis test and Tsybakov’s technique). We derive a lower bound on the

exploration frequency of the policy π. First, we fix some sub-segment index j ∈ [T̃ − 1] arbitrarily.

From Step 2, we know that K(Pπ,Fj

Fa
,Pπ,Fj

Fb
) ≤ β, where Fa := (Fa, . . . , Fa), and Fb := (Fb, . . . , Fb).

Finally, given that Fj := {ℓj , . . . , ℓj+1 − 1}, we consider the following hypotheses test:

H0 : Zt ∼ Fa, t ∈ Fj ,

H1 : Zt ∼ Fb, t ∈ Fj .

Let ϕ be any decision rule from the set of assortment and customer’s purchase decisions in Fj

into {0, 1}. By convention, ϕ = 0 indicates that the null hypothesis H0 is not rejected, and ϕ = 1

implies that the null hypothesis is rejected. Then, if H0 is true, then the random vector Z is Pπ,Fj

Fa
-

distributed, and if H1 is true, then the random vector Z is Pπ,Fj

Fb
-distributed.

Next, we leverage Theorem 2.2 by Tsybakov (2003), to derive a lower bound for the probability

of the Type I or II errors. Specifically, we obtain the following inequality:

inf
ϕ

max
{
Pπ,Fj

Fa

[
ϕ ̸= 0

]
,Pπ,Fj

Fb

[
ϕ ̸= 1

]}
≥ max

{1
4
exp(−β),

1−
√
β/2

2

}
.

Accordingly, by taking the complementary event, we obtain the following lower bound:

inf
ϕ

min
{
Pπ,Fj

Fa

[
ϕ = 0

]
,Pπ,Fj

Fb

[
ϕ = 1

]}
≥ max

{1
4
exp(−β),

1−
√
β/2

2

}
.

Next, we construct a decision rule ϕ that is based on the decision from policy π. Formally:

ϕ (π) =


0 if

∑
t∈Fj

1
(
ψt ̸= {N}

)
≤ ∆/2,

1 if
∑
t∈Fj

1
(
ψt ̸= {N}

)
> ∆/2,

where ϕ depends on the observed realization of the purchase decision through the filtration (Ht)
ℓj−1
t=0 .

We now apply the previously established lower bound for admissible decision rules to the one

that is induced by the policy π. The analysis bifurcates into two cases, depending on whether the

Type I or Type II error exhibits higher probability. Specifically:

Case 1. To begin, we assume that min
{
Pπ,Fj

Fa

[
ϕ = 0

]
,Pπ,Fj

Fb

[
ϕ = 1

]}
= Pπ,Fj

Fb

[
ϕ = 1

]
. Then, we
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derive an upper bound on the number of time policy π does not select the optimal assortment (if

the customer purchases are Fb-distributed). Formally, we obtain the following upper bound:

Pπ,Fj

Fb

[ ∑
t∈Fj

1
(
ψt ̸= {N}

)
≥ 1

2
∆
]
≤ 2∆−1E

P
π,Fj
Fb

[ ∑
t∈Fj

1
(
ψt ̸= {N}

)]
,

where we use the Markov’s inequality to obtain the inequality (Jacod and Protter 2012).

We derive a lower bound on the expected frequency that π picks an assortment that is not

optimal whenever the customer purchases are Fb-distributed. Thus, the following inequality holds:

E
P
π,Fj
Fb

[ ∑
t∈Fj

1
(
ψt ̸= {N}

)]
≥ 1

8
exp (−β)∆ =

1

8
exp (−1)∆.

Case 2. Next, we consider the case, where min{Pπ,Fj

Fa

[
ϕ = 0

]
,Pπ,Fj

Fb

[
ϕ = 1

]
} = Pπ,Fj

Fa
[ϕ = 0].

Then, assume that ϕ = 0. As a consequence, the following inequality holds:∑
t∈Fj

1
(
ψt = {N}

)
≥ 1

2
∆.

We hence obtain the following inequality:

Pπ,Fj

Fa

[ ∑
t∈Fj

1
(
ψt = {N}

)
≥ 1

2
∆
]
≤ 2∆−1E

P
π,Fj
Fa

[ ∑
t∈Fj

1
(
ψt = {N}

)]
,

where we use the Markov’s inequality to obtain the inequality.

We derive a lower bound on the expected frequency that π picks an assortment that is optimal

with respect to Fb whenever the customer purchases are Fa-distributed. That is:

E
P
π,Fj
Fa

[ ∑
t∈Fj

1
(
ψt = {N}

)]
≥ 1

8
exp (−1)∆.

Step 4 (Lower bound for the regret). Assume that, for each j ∈ [T̃ − 1], nature selects

either Fa or Fb as the customers’ preferences in sub-segment Fj , with probability 1
2 . The result-

ing preferences F (N) thus belong to M′. Accordingly, we derive the following lower bound on the

difference between the expected revenue of the oracle and that achieved by any policy π:

J∗(F (N), T )− Jπ(F (N), T ) ≥
∑

j∈[T̃−1]

[1
2

(
∆r({1}, Fa)−

∑
t∈Fj

r(ψt, Fa)
)

+
1

2

(
∆r({N}, Fb)−

∑
t∈Fj

r(ψt, Fb)
)]

(a)

≥
∑

j∈[T̃−1]

ζ

2

(
E
P
π,Fj
Fa

[ ∑
t∈Fj

1
(
ψt ̸= {1}

)]
+ E

P
π,Fj
Fb

[ ∑
t∈Fj

1
(
ψt ̸= {N}

)])
≥ 1

16
exp (−1) ζ(T̃ − 1)∆ ≥

√
2− 1

(16)2
√
2
exp (−1)T

3
4M

1
4
T ,
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where (a) follows from (E.C.1).

In particular, as this lower bound is valid for any admissible policy π, which imply

R∗ (F , T ) ≥ 1

16
exp (−1) ζ(T̃ − 1)∆ ≥

√
2− 1

(16)2
√
2
exp (−1)T

3
4M

1
4
T ,

which holds by the definition of regret. ■

We now proceed to establish an upper bound on the regret associated with the restart-and-learn

policy, as formally described in Algorithm 1.

Proof of Theorem 2. For A ∈ P and ∆ ≤ T , let π ≡ π(∆,A) denote the policy defined in Algo-

rithm 1, and let w ≡ {wi : i ∈ N} be the profit vector. We fix T ≥ 2 and consider arbitrary

preferences F (N) ∈ F , where F is a class of preferences characterized by its magnitude M(F , T ).

Let ∆ ∈ [T ], and define T̃ − 1 := ⌈T/∆⌉ − 1 as the number of time sub-segments F1, . . . ,FT̃−1,

each of size ∆ (except possibly the last sub-segment, which may be smaller). We decompose the

regret obtained by policy π into two components, denoted by R1 and R2, as follows:

J∗(F (N), T )− Jπ(F (N), T ) =
T∑
t=1

(
r(S∗(F t), F t)− EPπ

F (N)

[
wit
])

≡ R1 +R2,

where R1 and R2 are defined by:

R1 :=
T̃−1∑
j=1

( ∑
t∈Fj

r(S∗(F t), F t)−max
S∈S

∑
t∈Fj

r(S, F t)
)
,

R2 :=

T̃−1∑
j=1

max
S∈S

{∑
t∈Fj

r(S, F t)
}
− EPπ

F (N)

[ T∑
t=1

wit
]
.

The term R1 corresponds to the revenue loss incurred by replacing the fully informed oracle

with a semi-oracle that knows the preferences for a time sub-segment but can only implement a

single assortment for that sub-segment. Then, the term R2 captures the additional regret arising

from employing policy π instead of the semi-oracle.

Step 1 (Upper bound for R1). We begin by deriving an upper bound for the first regret

component R1. For any fixed j ∈ [T̃ − 1], we define:

Mj =
∑
t∈Fj

max
{
Kt(S) : S ∈ S

}
,

as the cumulative preferences variation within sub-segment Fj . Thus, by construction, if we sum

over all sub-segment indices j, then we obtain
T̃−1∑
j=1

Mj ≤ M(F , T ).
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Let tj ∈ argmin{p0(S∗(F t), F t) : t ∈ Fj}. We establish the following chain of inequalities:∑
t∈Fj

r(S∗(F t), F t)−max
S∈S

∑
t∈Fj

r(S, F t) ≤
∑
t∈Fj

r(S∗(F t), F t)−
∑
t∈Fj

r(S∗(F tj ), F t)

=
∑
t∈Fj

∑
i∈N

wi
(
pi(S

∗(F t), F t)− pi(S
∗(F tj ), F t)

)
≤ ∥w∥1

∑
t∈Fj

(∑
i∈N

pi(S
∗(F t), F t)−

∑
i∈N

pi(S
∗(F tj ), F t)

)
= ∥w∥1

∑
t∈Fj

(
p0(S

∗(F tj ), F t)− p0(S
∗(F t), F t)

)
≤ ∥w∥1∆ ·max

t∈Fj

{
p0(S

∗(F tj ), F t)− p0(S
∗(F t), F t)

}
.

We proceed to prove that:

max
t∈Fj

{
p0(S

∗(F tj ), F t)− p0(S
∗(F t), F t)

}
≤
√
Mj/2,

via contradiction. Suppose there exists t0 ∈ Fj such that:

p0(S
∗(F tj ), F t0)− p0(S

∗(F t0), F t0) >
√
Mj/2.

As a consequence, we derive the following sequence of inequalities:√
Mj/2 < p0(S

∗(F tj ), F t0)− p0(S
∗(F t0), F t0)

= p0(S
∗(F tj ), F t0)− p0(S

∗(F tj ), F tj ) + p0(S
∗(F tj ), F tj )− p0(S

∗(F t0), F t0)

(a)

≤ p0(S
∗(F tj ), F t0)− p0(S

∗(F tj ), F tj )

(b)

≤
|Fj |−1∑
t=1

∥p(S∗(F tj ), F t+1)− p(S∗(F tj ), F t)∥∞

(c)

≤
|Fj |−1∑
t=1

(1
2
K(p(S∗(F tj ), F t+1), p

(
S∗(F tj ), F t

) ) 1
2

≤
(1
2

|Fj |−1∑
t=1

Kt(S∗(F tj ))
) 1

2 ≤
√
Mj/2,

where (a) follows from the definition of tj and (b) by the triangle inequality. Moreover, F t refers

to the t-th element of Fj . Additionally, (c) follows from Pinkster’s inequality (Tsybakov 2003).

Therefore, we do have a contradiction as
√
Mj/2 <

√
Mj/2.

Therefore, we conclude that:

R1 =

T̃−1∑
j=1

( ∑
t∈Fj

r(S∗(F t), F t)−max
S∈S

∑
t∈Fj

r(S, F t)
)
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≤
T̃−1∑
j=1

∥w∥1∆
√
Mj/2

(a)

≤ 1√
2
∆
√
T̃ − 1∥w∥1

( T̃−1∑
j=1

Mj

) 1
2 ≤ 1√

2
∆
√
T/∆∥w∥1 ·

√
M(F , T ),

where (a) follows from the Jensen’s inequality.

Step 2 (Upper bound for R2). We now establish a bound for the second regret compo-

nent R2. For any fixed j ∈ [T̃ − 1], let ψt,j denote the assortment policy induced by A on Fj for

t ∈ Fj . Let S ∈ S fixed arbitrarily. For each sub-segment j, we identify tj ≡ tj(S) ∈ Fj such that:∑
t∈Fj

r(S, F t) ≤
∑
t∈Fj

r(S, F tj ).

Then, we have that:∑
t∈Fj

r(S, F t)−
∑
t∈Fj

r(ψj,t, F
t) =

∑
t∈Fj

r(S, F t)−
∑
t∈Fj

r(ψj,t, F
tj ) +

∑
t∈Fj

r(ψj,t, F
tj )−

∑
t∈Fj

r(ψj,t, F
t)

≤
∑
t∈Fj

r(S, F tj )−
∑
t∈Fj

r(ψj,t, F
tj ) +

∑
t∈Fj

r(ψj,t, F
tj )−

∑
t∈Fj

r(ψj,t, F
t)

(a)
=
∑
t∈Fj

r(S, F tj )−
∑
t∈Fj

r(ψj,t, F
tj )

+
∑
t∈Fj

∑
i∈[N ]

wi
(
pi(ψj,t, F

tj )− pi(ψj,t, F
t)
)
,

where (a) follows from the definition of the expected revenue.

Since |S| is finite, we have that:∑
t∈Fj

r(S, F tj )−
∑
t∈Fj

r(ψj,t, F
tj )

(a)

≤ max
S∈S

{∑
t∈Fj

r(S, F tj )−
∑
t∈Fj

r(ψj,t, F
tj )
}

≤ sup
F (N)∈FS

{
max
S∈S

{∑
t∈Fj

(
r(S, FS)− r(ψj,t, FS)

)}
: F t = FS ∀ t ∈ N

}
= RA(FS ,∆),

where (a) follows as the maximum is well-defined (since tj ≡ tj(S) is defined for each S ∈ S).

Moreover, RA(FS ,∆) represents the minimax regret of policy A when preferences remain static.

Next, we derive the following sequence of inequalities:∑
t∈Fj

∑
i∈[N ]

wi
(
pi(ψj,t, F

tj )− pi(ψj,t, F
t)
)
=
∑
t∈Fj

∥w∥∞N∥p(ψj,t, F tj )− p(ψj,t, F
t)∥∞

(a)

≤ ∥w∥∞N
∑
t∈Fj

( |Fj |∑
u=2

∥p(ψj,t, F u)− p(ψj,t, F
u−1)∥∞

)
(b)

≤ ∥w∥∞N
∑
t∈Fj

( |Fj |∑
u=2

√
1

2
Ku(ψj,t)

)
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(c)

≤ ∥w∥∞N
∑
t∈Fj

(1
2

|Fj |∑
u=2

Ku(ψj,t)
)1/2 ≤ ∥w∥1N∆

√
Mj/2,

where we denote by F u the u-th element of Fj . Moreover, (a) follows by the triangle inequality and

(b) follows from the Pinsker’s inequality (Tsybakov 2003). Then, (c) follows by Jensen’s inequality.

Therefore, by summing over j ∈ [T̃ − 1], and given that T̃ − 1 = ⌈T/∆⌉ − 1, we have that:

T̃−1∑
j=1

( ∑
t∈Fj

r(S, F t)−
∑
t∈Fj

r(ψj,t, F
t)
) (a)

≤
(
T̃ − 1

)
RA(FS ,∆)+ 1√

2
∆N∥w∥1

( T̃−1∑
j=1

Mj

) 1
2

=
(
T̃ − 1

)
RA(FS ,∆)+ 1√

2
∆N∥w∥1 ·

√
M(F , T ),

where (a) follows from Jensen’s inequality.

Specifically, we obtain the following upper bound on R2:

T̃−1∑
j=1

max
S∈S

{∑
t∈Fj

(
r(S, F t)− EPπ

F (N)
[wit ]

)}
≤ ⌈T/∆⌉RA(FS ,∆)+ 1√

2
∆N∥w∥1

√
M(F , T ).

Step 3 (Synthesis). Combining the bounds derived in Steps 1 and 2, we obtain:

J∗(F (N), T )− Jπ(F (N), T ) ≤ ⌈T/∆⌉RA(FS ,∆)+ 1√
2
∆
√
T/∆∥w∥1

(
N + 1

)
·
√

M(F , T ).

Importantly, the right-hand side of the previous inequality does not depend on the customers’

preferences F (N). Hence, by taking the supremum from both side of the inequality over F , we

obtain the desired result and conclude the proof. ■
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E.C.2 Proofs for Section 5

First, in Section E.C.2.1, we provide proofs for both the lower bound on achievable performance

and an upper bound on the regret achieved by Algorithm 1 in settings in which the change is

passively undetectable and the retailer has no information about it (except that the change is

abrupt). Next, in Section E.C.2.2, we consider scenarios in which the change cannot be detected

passively. We derive the corresponding lower bound on achievable performances and an upper

bound on the regret achieved by Algorithm 2 when information is available on the magnitude.

In Section E.C.2.3, we focus on cases where the change is detectable using information from the

pre-change optimal assortment. We derive both a lower bound on the achievable performance

and an upper bound for the regret achieved by Algorithm 3. To streamline our discussion, some

relevant notations, including the definitions of minimum optimality gap γ and maximum revenue

separation δ as well as technical lemmas used within the proofs are relegated to Section E.C.4.

E.C.2.1 Proofs for Section 5.2

For T ≥ 2 and ∆ ∈ [T ], we define T̃−1 := ⌈T/∆⌉−1 as the number of sub-segments F1, . . . ,FT̃−1,

each of size ∆. We also refer to these sub-segments interchangeably as “time segments” or “cus-

tomer segments.” Let ℓ1 := 1, and for j ≥ 2, define ℓj := 1 + (j − 1)∆, with ℓT̃ := T . Throughout

this section, we assume that F 1 and F τ correspond to the pre- and post-change preferences, respec-

tively. Specifically, preferences F (N) ≡
(
F t : t ∈ N

)
are defined by F t := F 1 for t < τ and F t := F τ

for t ≥ τ , for some τ ∈ N, and satisfy F (N) ∈ FA. We say that preferences F (N) are induced by F 1

and F τ . We assume that both the post-change preferences F τ and the change time τ are unknown

to the retailer. Also, we define Pπℓj as the distribution over customers purchase decisions across

the T periods, conditional on the policy π ∈ P and the change occurring at time τ = ℓj .

The lower bound that any admissible policy must incur, as stated in Proposition 3, is closely

related to the result in Proposition 7, in which the post-change preferences are assumed to be known

by the retailer. Specifically, the arguments that we use in the proofs of Lemma 4 and Lemma 5

can be adapted to establish Lemma 2 and Lemma 3. Therefore, to maintain brevity, the proofs of

Lemma 2 and 3 bellow are omitted. Finally, we conclude the section with the proof of Proposition 2,

which essentially provides an upper bound on the regret achieved by the restart-and-learn policy.
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Lemma 2. Assume that there exist an admissible policy π ∈ P and a constant β > 0 that satisfy:

min
1≤j≤T̃−1

{
K
(
Pπℓj+1

,Pπℓj
)}

≤ β.

Then, there exists a finite constant C ≡ C(γ, β) > 0 such that:

sup
F (N)∈FU

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ C∆.

Lemma 3. Assume that there exist an admissible policy π ∈ P and a constant β > 0 that satisfy:

min
1≤j≤T̃−1

{
K
(
Pπℓj+1

,Pπℓj
)}

> β.

Then, there exists a finite constant C ≡ C(γ, β) > 0 such that:

sup
F (N)∈FU

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ C(T̃ − 1)M(FU , T )−1.

Both lemmas essentially establish a lower bound on the regret that any admissible policy must

achieve by classifying policies into two categories: those that explore sufficiently within each possible

customer sub-segment and those that do not. Accordingly, we obtain the following proposition.

Proof of Proposition 1. For T ≥ 2, we define ∆ = ⌈T 1/2 · M(FU , T )−1/2⌉. Consequently, we have

∆ ≥ T 1/2 · M(FU , T )−1/2 and T̃ − 1 ≥ T 1/2 · M(FU , T )1/2 − 1. Next, we fix β = 1.

For any policy, we apply either Lemma 2 or Lemma 3, depending on whether the policy explores

sufficiently or not. Consequently, the following lower bound for the regret holds:

sup
F (N)∈FU

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ min

{
C1∆, C2(T̃ − 1) · M(FU , T )−1

}
≥ C(γ)

(
T 1/2 · M(FU , T )−1/2 − 1

)
,

where C1 ≡ C1(γ, 1) and C2 ≡ C2(γ, 1) are the constants obtained from Lemma 2 and Lemma 3,

respectively. Moreover, C(γ) = min
{
C1(γ, 1), C2(γ, 1)

}
and the inequality holds for all T ≥ 2. ■

Next, we derive an upper bound on the regret achieved by the assortment strategy from Algo-

rithm 1. Formally, we provide the proof of Proposition 2.

Proof of Proposition 2. Let F 1 be such that F (N) ∈ FU so that preferences are indistinguishable

from S∗(F 1). Loosely speaking, since the environment is aware that the restart-and-learn policy,

described in Algorithm 1, always explores assortments, it should never change the customers’

preferences. In that case, the policy would repeatedly explore, driving in turn the regret upwards.

We formalize this intuition afterwards.

Observe that the minimax regret that is achieved by any policy in the stationary setting does

not depend on F 1 or F τ (the pre- and post-change preferences). Let A ∈ P be a subroutine that is
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used to learn the customers’ preferences in the stationary regime. For T ≥ 2, we define the segment

size used in Algorithm 1 as ∆ = ⌈T · M(FU , T ) ·M−1⌉ ≤ T . Accordingly, we have that:

T̃ := ⌈T/∆⌉ ≤ T/∆+ 1 ≤ 2M · M(FU , T )−1.

Let ψt be assortment decision from policy A at time t. Then, we derive an upper bound for the

difference between the expected revenue obtained by the oracle and that achieved by our policy:

J∗(F (N), T )− Jπ(F (N), T ) =

T∑
t=1

(
r(S∗(F t), F t)− r(ψt, F

t)
)

=

T∑
t=1

(
r(S∗(F 1), F 1)− r(ψt, F

1)
)
1
(
t < τ

)
+

T∑
t=1

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)
1
(
t ≥ τ

)
≤ 2(T̃ − 1) · RA (Fb(F 1),∆

)
.

Accordingly, we obtain the following upper bound on the regret:

sup
F (N)∈FU (F 1)

{
J∗(F (N), T )− Jπ(F (N), T )

}
≤ 4M · M(FU , T )−1 · RA (Fb(F 1),∆

)
.

which, in turn, concludes the proof. ■

E.C.2.2 Proofs for Section 5.3

We present the proofs for the setting in which the post-change preferences are unknown to the

retailer and the change cannot be detected using information available solely from the pre-change

optimal assortment. Specifically, we establish a lower bound on the regret that any admissible policy

must incur, as stated in Proposition 3. We then derive an upper bound on the regret achieved by

the assortment strategy described in Algorithm 2, as formalized in Proposition 4.

Proof of Proposition 3. The proof closely follows the argument the proof of Proposition 7, which

considers the case where the post-change preferences are known; refer to (E.C.3.1) for the complete

proof. When the post-change preferences are unknown, no policy can achieve a regret smaller

than the bound established in the known-setting case. The constant in that lower bound can be

expressed in terms of both γ and ϕ, as specified in the definition of F̃U . Since the arguments remain

unchanged, we omit the detailed derivation for brevity. ■

Next, we derive an upper bound on the regret achieved by Algorithm 2.
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Proof of Proposition 4. Let T ≥ 2, κ > 0, F 1 be such that F (N) ∈ FA and A ∈ P be defined as in

the proposition statement. Then, we denote by F (N) ∈ F̃U (F 1) customers’ preferences for which

the change cannot be detected based on the information available from the pre-change optimal

assortment S∗(F 1). Moreover, F τ represents the post-change preferences, which remains unknown

to the retailer. Then, we fix ∆o =
√
T/κ2 and ∆e = 4(log T )/κ2.

Next, we segment the selling time horizon [T ] into sub-segments of size ∆o+ |E|∆e. Specifically,

we define ℓ0 = 1 and ℓj = ℓj−1 +∆o+ |E|∆e, for j ∈ [T̃ − 1], where T̃ − 1 := ⌈T/(∆o+ |E|∆e)⌉− 1.

Moreover, we introduce j∗ as the index that satisfies ℓj∗ < τ ≤ ℓj∗+1, where τ is the time-period

at which the change happens. We denote by π ≡ π(κ, F 1, E ,A) defined by Algorithm 2.

Then, given some sub-segment index j ∈ [T̃ − 1], we define:

Λ̂ℓj := 1
(
max

{
∥p(S, F̂ (S))− p(S, F 1)∥∞ : S ∈ E

}
> κ/2

)
,

where F̂ (S) corresponds to the empirical distribution of the purchase decisions conditional on

the assortment S ∈ E . Next, we introduce k̂ as the stopping rule that is used within policy π.

Specifically, given j ∈ [T̃ − 1], the stopping rule is formally defined by:

k̂ℓj (Hℓj−1) := ℓj+1Λ̂ℓj .

Step 1. To begin, we define the assortment strategy that is induced by π as ψt, for t ∈ [T ]. In

particular, we omit the dependence of the policy on the filtration (Ht)
T
t=0 to simplify the notations.

Then, we derive the following upper bound for the difference between the expected revenue obtained

by the oracle and the expected revenue obtained with π:

J∗(F (N), T )− Jπ(F (N), T ) = EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1)− r(ψt, F

1)
)]

+ EPπ
τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)]

(a)

≤ δ ·
(
EPπ

τ

[ τ−1∑
t=1

1
(
ψt ̸= S∗(F 1)

)]
+ EPπ

τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
]))

(b)

≤ δ ·
(
EPπ

τ

[
(τ − k̂)+

]
+ EPπ

τ

[
(k̂ − τ)+

]
+
∑
S∈E

EPπ
τ

[ k̂∑
t=1

1
(
ψt = S

)])
+ EPπ

τ

[ T∑
t=max{k̂,τ}

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)]
.

Note that, (a) follows from the definition of δ; recall (E.C.4). Moreover, there are two possible

cases for implementing an assortment S ̸= S∗(F 1) before the change occurs. The first one corre-
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sponds to the case where the algorithm falsely detects a change earlier than τ and subsequently

runs A to learn the new customers’ preferences. The second one arises during an exploration batch,

which requires implementing assortments in E . Thus, (b) follows from these two observations, com-

bined with the fact that implementing an assortment other than S∗(F τ ) after time period τ occurs

either because the change has not yet been detected or because A is being executed to learn the

new customers’ preferences.

Importantly, the last part of the upper bound corresponds to the regret achieved by the policy A

in the stationary setting. Formally, the following inequality holds:

EPπ
τ

[ T∑
t=max{k̂,τ}

(
r
(
S∗(F τ ), F τ

)
− r
(
ψt, F

τ
))]

≤ EPπ
τ

[ T∑
t=τ

(
r
(
S∗(F τ ), F τ

)
− r
(
ψt, F

τ
))]

≤ RA(Fb(F 1), T
)
,

where the last inequality follows from the definition of regret of the policy A for static preferences.

Step 2. We derive an upper bound for the probability of the Type I error, which we denote

by qf,j , for the test Λ̂ℓj from the sub-segment j ∈ [T̃ −1]. Given j ∈ [T̃ −1], we define the purchase

decisions within that segment by Zℓj , . . . , Zℓj+1−1. Then, we consider the following hypothesis test:

H0,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F 1

H1,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F ̸= F 1.

Next, we derive an upper bound for qf,j . We leverage from the multivariate Dvoretzky-Kiefer-

Wolfowitz (shortly DKW) inequality by Naaman (2021). Specifically:

qf,j = P
[
Λ̂ℓj = 1 | H0,j

]
≤ P

[
max

{
∥p(S, F̂ (S))− p(S, F 1)∥∞ : S ∈ E

}
> κ/2

}
| H0,j

]
(a)

≤ K(∆e + 1) exp
(
−∆eκ

2/2
)
= K(4κ−2(log T ) + 1)T−2,

where (a) follows from the DKW inequality.

Step 3. Next, we derive an upper bound for the expression EPπ
τ

[
(τ − k̂)+

]
. To proceed, we

first derive the following sequence of inequalities:

EPπ
τ

[
(τ − k̂)+

]
=

τ−1∑
u=1

Pπτ
[
(τ − k̂)+ ≥ u

]
=

τ−1∑
u=1

Pπτ
[
k̂ ≤ τ − u

]
(a)

≤
j∗∑
j=1

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋃
m=1

{k̂ = ℓm + 1}
]

≤
j∗∑
j=1

ℓj+1−1∑
i=ℓj

j∑
m=1

Pπτ
[
k̂ = ℓm + 1

]
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(b)

≤
j∗−1∑
j=1

ℓj+1−1∑
ℓ=ℓj

j∑
m=1

qf,j =

j∗−1∑
j=1

j|E|∆eqf,j ,

where (a) follows from that τ ≤ ℓj∗+1 and the definition of our stopping-time random variable.

Then, (b) follows from the definition of the Type I error and that ℓj∗ < τ ≤ ℓj∗+1.

Recall that each exploration batch is of size ∆e = 4(log T )/κ2. Therefore, we obtain the follow-

ing upper bound for the expression EPπ
τ

[
(τ − k̂)+

]
:

EPπ
τ

[
(τ − k̂)+

]
≤ |E|∆e

j∗(j∗ − 1)

2
max{qf,j : j ∈ [T̃ − 1]}

(a)

≤ T 2

2|E|∆e
K(4κ−2(log T ) + 1)T−2 = K(

1

2|E|
+

κ2

8|E| log 2
),

where (a) follows from Step 2, in which a bound for qf,j is derived, and from the fact that j∗ ≤ T̃−1,

implying j∗(j∗ − 1) ≤ (T̃ − 1)(T̃ − 2), as well as from the definition of ∆e.

Step 4. In the following, we provide an upper bound for the expression EPπ
τ

[
(k̂ − τ)+

]
. To

begin, let qd,j denote the probability of a Type II error for the hypothesis test defined above within

the sub-segment j ∈ [T̃ − 1]. Then, the following sequence of inequalities holds:

EPπ
τ

[
(k̂ − τ)+

]
=

T−τ+1∑
u=0

Pπτ
[
k̂ ≥ τ + u

]
≤

T̃−1∑
j=j∗

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗

{
k̂ ̸= ℓm + 1

}]
(a)

≤
T̃−1∑

j=j∗+2

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗+2

{
k̂ ̸= ℓm + 1

}]
+ 2|E|∆e

(b)
= |E|∆e

(
2 +

T̃−1∑
j=j∗+2

(qd,j∗+2)
j−j∗−1

)
= |E|∆e

(
2 + qd,j∗+2

1− (qd,j∗+2)
T̃−j∗

1− qd,j∗+2

)
≤ 2|E|∆e

1− qd,j∗+2
=

8|E| log(T )/κ2

1− qd,j∗+2
,

where (a) follows from the observation that the change could occur anywhere within the sub-

segment {ℓj∗ , . . . , ℓj∗+1−1}. Additionally, (b) holds because qd,j = qd,j∗+2 for all j ∈ {j∗+2, . . . , T̃},

since the probability of a Type II error depends only on the occurrence of the change.

Step 5. Next, we derive an upper bound for the probability of the Type II error induced by

the statistical test Λ̂ℓj . To proceed, we assume that Λ̂ℓj = 0. Hence, the following inequality holds:

max
{
∥p(S, F̂ (S))− p(S, F 1)∥∞ : S ∈ E

}
≤ κ/2.
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Consequently, the following inequality is guaranteed to hold for all feasible assortment S ∈ E :

∥ 1

∆e

ℓj∗+1−1∑
t=ℓj∗

Zt(S)− p
(
S, F 1

)
∥∞ ≡ ∥p(S, F̂ (S))− p

(
S, F 1

)
∥∞ ≤ κ/2,

where Zt(S) represent the purchase decision when assortment S is offered at time t, and a vector

with only zero elements otherwise. Then, we derive the following sequence of inequalities, which is

guaranteed to hold for all S ∈ S:

0 < ∥p
(
S, F 1

)
− p (S, F τ ) ∥∞

≤ ∥p
(
S, F 1

)
− 1

∆e

ℓj∗+1−1∑
t=ℓj∗

Zt(S)∥∞ + ∥ 1

∆e

ℓj∗+1−1∑
t=ℓj∗

Zt(S)− p (S, F τ ) ∥∞

≤ κ/2 + ∥ 1

∆e

ℓj∗+1−1∑
t=ℓj∗

Zt(S)− p (S, F τ ) ∥∞.

To proceed, we use the multivariate DKW inequality to derive an upper bound for the proba-

bility of the Type II error for the sub-segment j∗. Specifically:

qd,j∗ ≤ P
[
Λ̂ℓj = 0 | H1,j∗

]
≤ P

[
∥ 1

∆e

ℓj∗+1∑
t=ℓj∗

Zt(S)− p(S, F τ )∥∞ > ∥p
(
S, F 1

)
− p (S, F τ ) ∥∞ − κ

2
| H1,j∗

]
≤ K(∆e + 1) exp

(
− 2∆e(∥p(S, F 1)− p(S, F τ )∥∞ − κ

2
)2
)
.

Hence, the following inequalities are guaranteed to hold:

EPπ
τ

[
(k̂ − τ)+

]
≤ 8|E|∆e

(
1−K(∆e + 1) exp(−2∆e(∥p(S, F 1)− p(S, F τ )∥∞ − κ

2

)2
)
)−1

(a)

≤ 8|E|∆e

(
1−K(∆e + 1) exp(−2∆e(

√
κ/2− κ/2)2)

)−1
(b)

≤ 8|E|∆e,

where (a) follows from the definition of κ together with the Pinsker’s inequality (Tsybakov 2003).

Moreover, (b) holds as long as T ≥ t(K,κ), where t(K,κ) is the smallest sample size for which the

probability of the Type II error qd,j∗ is bounded above by 1/2.

Consequently, for any T ≥ t(K,κ), we obtain the following upper bound:

EPπ
τ

[
(k̂ − τ)+

]
≤ 8κ−2|E| log T

1− qd,j∗+2
≤ 16κ−2|E| log T.

Step 6. Least but not last, we derive an upper bound for the term
∑

S∈E EPπ
τ

[∑k̂
t=1 1

(
ψt = S

)]
.

Importantly, by the definition of the stopping time k̂, we must have k̂ ≤ T . Hence, we obtain the
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following sequence of inequalities, which holds for any T ≥ 2:

∑
S∈E

EPπ
τ

[ k̂∑
t=1

1
(
ψt = S

)]
≤
∑
S∈E

(T̃ − 1)∆e ≤
∑
S∈E

T

∆o + |E|∆e
∆e

= |E| 4T (log T )/(κ2)√
T/κ2 + 4 |E| (log T )/(κ2)

≤ 4|E|
√
T log T.

Step 7. We conclude the proof by aggregating the upper bounds that are derived in the previ-

ous steps (specifically, in Steps 3, 4 and 6). Importantly, we assume that the time horizon is large

enough, that is, T ≥ t(K,κ). Under this assumption, we obtain the following upper bound on the

difference between the expected revenue obtained by the oracle and the one from policy π:

J∗(F (N), T )− Jπ(F (N), T ) ≤ δ ·
(
K(

1

2|E|
+

κ2

8|E| log 2
) + 16κ−2|E| log T + 4|E|

√
T log T

)
+RA(Fb(F 1), T

)
.

Therefore, we obtain the following upper bound on the regret of our policy:

J∗(F (N), T )− Jπ(F (N), T ) ≤ C1 + C2 log T + 4∥w∥1|E|
√
T log T +RA(Fb(F 1), T

)
,

where we use that δ ≤ ∥w∥1 and set:

C1 ≡ C1(K,κ, E ,∆) := K∥w∥1 ·
( 1

2|E|
+

κ2

8|E| log 2
)
, and C2 ≡ C2(κ, E) := 16∥w∥1κ−2|E|.

To conclude, if we take the supremum over all possible instances F (N) ∈ F̃U (F 1) of customers’

preferences of the previous expression, then we obtain the desired result. ■

E.C.2.3 Proofs for Section 5.4

To proceed, we present the proofs of the results obtained when the post-change preferences are

unknown but the change can be distinguished based on the available information from S∗(F 1).

Specifically, we establish a lower bound on the regret that any admissible policy must achieve,

as described in the proof of Proposition 5, and derive an upper bound on the regret achieved by

Algorithm 3 as outlined in proof of Proposition 6.

Proof of Proposition 5. The proof closely follows the one for Proposition 9 in the case where the

post-change preferences are assumed to be known by the retailer. Importantly, if the post-change

preferences are unknown, then no policy can achieve a regret lower than that in the known case.

Also, the constant ϑ in the lower bound of Proposition 9 can be replaced by ε (see the proof of

Proposition 9 for details) and the results then coincide. Therefore, we omit the proof for brevity. ■

Next, we derive an upper bound on the regret achieved by Algorithm 3.
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Proof of Proposition 6. Let T ≥ 2, ε > 0, F 1 be such that F (N) ∈ FA and A ∈ P be defined

as in the proposition statement. Then, we denote by F (N) ∈ FD(F 1) the customers’ preferences,

where a change can be detected based on the information available from the pre-change optimal

assortment S∗(F 1). Moreover, F τ represents the post-change preferences, which remain unknown

to the retailer. Then, we fix ∆ = C log T , where C := 4ε−2, as specified in the policy.

Next, we define ℓ0 = 1 and ℓj+1 = ℓj +∆, for j ∈ {0, . . . , T̃ − 1}, where T̃ := ⌈T/∆⌉. Moreover,

we introduce j∗ as the index which satisfies ℓj∗ < τ ≤ ℓj∗+1, where τ is the time period at which the

change happens. We denote by k̂ the stopping rule that is used within policy π from Algorithm 3.

Specifically, we have:

k̂ℓj (Hℓj−1) := ℓj+11
(
∥p̂− p

(
S∗(F 1), F 1

)
∥∞ > ε/2

)
,

where p̂ denotes the empirical purchase distribution conditional on S∗(F 1).

Step 1. We introduce the assortment strategy determined by the policy π at time t ∈ [T ],

and which we denote by ψt. For simplicity, we omit the explicit dependence of ψt on the filtra-

tion (Ht)
T
t=0. We then derive the following inequalities to bound the difference between the oracle’s

expected revenue and the expected revenue achieved by the policy:

J∗(F (N), T )− Jπ(F (N), T ) = EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1)− r(ψt, F

1)
)]

− EPπ
τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)]

(a)

≤ δ · EPπ
τ

[ τ−1∑
t=1

1
(
ψt ̸= S∗(F 1)

) ]
+ EPπ

τ

[ T∑
t=τ

(
r (S∗(F τ ), F τ )− r(ψt, F

τ )
)]

= δ ·
(
EPπ

τ

[
(τ − k̂)+

]
+ EPπ

τ

[
(k̂ − τ)+

])
+ EPπ

τ

[ T∑
t=max{k̂,τ}

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)]
,

where (a) follows from the definition of δ.

Hence, the regret can be decomposed into two distinct terms: the delay associated with our

change detection approach and the regret that is driven by learning the new customers’ preferences.

In particular, the later can be bounded above as follows:

EPπ
τ

[ T∑
t=max{k̂,τ}

(
r (S∗(F τ ), F τ )− r (ψt, F

τ )
)]

≤ EPπ
τ

[ T∑
t=τ

(
r (S∗(F τ ), F τ )− r (ψt, F

τ )
)]
,

66



which essentially captures the regret incurred by the learning algorithm (arising from the subrou-

tine A, which is invoked within our policy) over the selling time horizon from τ to T . This term

quantifies the performance gap between the optimal policy and the choices made by the learning

algorithm. Hence, it is naturally bounded above by RA(Fb(F 1), T ).

Step 2. We establish a bound for the probability of the Type I error in the hypothesis test that

is conducted within the policy for each segment. First, we denote it by qf,j . To proceed, we start

by fixing an arbitrary index j ∈ [T̃ − 1]. Then, we assume that the following purchase decisions

Zℓj , . . . , Zℓj+1−1 are observed. The hypothesis test is thus formally defined as follows:

H0,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F 1

∣∣ S∗(F 1),

H1,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F ̸= F 1

∣∣ S∗(F 1).

Next, define Λ̂ℓj := 1
(
∥p̂− p(S∗(F 1), F 1)∥∞ > ε/2

)
, where p̂ represents the empirical purchase

distribution conditional on S∗(F 1), as the statistical test for the above hypothesis test. By def-

inition, the probability of the Type I error qf,j is given by qf,j := P
[
Λ̂ℓj = 1

∣∣ H0,j

]
. To bound

this probability, we use that each assortment has at most K products, i.e., ∥S∥1 ≤ K, for each

assortment S ∈ S and then apply the multivariate DKW inequality (Naaman 2021). Specifically:

P
[
Λ̂ℓj = 1

∣∣ H0,j

]
≤ K(∆ + 1) exp(−1

2
∆ε2).

Step 3. Next, we find an upper bound for the expression EPπ
τ

[
(τ − k̂)+

]
. We first fix some

index j ∈ [j∗]. Then, we proceed by deriving the following sequence of inequalities:

EPπ
τ

[
(τ − k̂)+

]
=

τ−1∑
u=1

Pπτ
[
(τ − k̂)+ ≥ u

]
=

τ−1∑
u=1

Pπτ
[
k̂ ≤ τ − u

]
(a)

≤
j∗∑
j=1

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋃
m=1

{k̂ = ℓm + 1}
]

≤
j∗∑
j=1

ℓj+1−1∑
i=ℓj

j∑
m=1

Pπτ
[
k̂ = ℓm + 1

] (b)

≤
j∗−1∑
j=1

ℓj+1−1∑
ℓ=ℓj

j∑
m=1

qf,j = ∆

j∗−1∑
j=1

jqf,j ,

where (a) follows from that τ ≤ ℓj∗+1 and the definition of our stopping-time random variable.

Then, (b) follows from the definition of the Type I error and that ℓj∗ < τ ≤ ℓj∗+1.

Therefore, we have that:

EPπ
τ

[
(τ − k̂)+

]
≤ ∆

j∗ (j∗ − 1)

2
qf,j

≤ K∆
T̃ (T̃ − 1)

2
exp(−1

2
∆ε2)

≤ ∆−1T 2K(∆ + 1) exp(−1

2
∆ε2) = K(1 + ∆−1) ≤ K(1 +

ε2

4 log(2)
).
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Step 4. The next step provides an upper bound for the expression EPπ
τ

[
(k̂ − τ)+

]
. We denote

by qd,j the probability of the Type II error of the test within the sub-segment j:

EPπ
τ

[
(k̂ − τ)+

]
=

T−τ+1∑
u=0

Pπτ
[
k̂ ≥ τ + u

]
≤

T̃−1∑
j=j∗

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗

{k̂ ̸= ℓm + 1}
]

(a)

≤
T̃−1∑

j=j∗+2

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗+2

{k̂ ̸= im + 1}
]
+ 2∆

(b)
= ∆

(
2 +

T̃−1∑
j=j∗+2

(qd,j∗+2)
j−j∗−1

)
= ∆

(
2 + qd,j∗+2

1− (qd,j∗+2)
T̃−j∗

1− qd,j∗+2

)
≤ 2∆

1− qd,j∗+2
,

where (a) follows from the fact that the change could occur anywhere within the customer seg-

ment {ℓj∗ , . . . , ℓj∗+1 − 1}. Moreover, (b) holds because qd,j = qd,j∗+2 for all j ∈ {j∗ + 2, . . . , T̃}.

This equivalence arises from the fact that the probability of the Type II error depends solely on

the occurrence of the change, rather than on its specific sub-segment after index j∗ + 2.

Step 5. In the following, we provide an upper bound for the Type II error at the sub-

segment j∗. To proceed, we assume that the statistical test does not reject the null hypothesis

within sub-segment j∗. That is, we assume that:

∥ 1

∆

ℓj∗+1−1∑
t=ℓj∗

Zt − p
(
S∗(F 1), F 1

)
∥∞ ≤ ε

2
.

Therefore, the following sequence of inequalities holds:

0 < ∥p
(
S∗(F 1), F 1

)
− p

(
S∗(F 1), F τ

)
∥∞

≤ ∥p
(
S∗(F 1), F 1

)
− 1

∆

ℓj∗+1−1∑
t=ℓj∗

Zt∥∞ + ∥ 1

∆

ℓj∗+1−1∑
t=ℓj∗

Zt − p
(
S∗(F 1), F τ

)
∥∞

≤ ε

2
+ ∥ 1

∆

ℓj∗+1−1∑
t=ℓj∗

Zt − p
(
S∗(F 1), F τ

)
∥∞.

Hence, by using the multivariate DKW inequality, we derive the following upper bound for the

probability of the Type II error within the sub-segment j∗:

qd,j∗ ≤ P
[
Λ̂ℓj∗ = 0 | H1,j∗

]
≤ P

[
∥ 1

∆

ℓj∗+1∑
t=ℓj∗

Zt − p(S∗(F 1), F τ )∥∞ > ∥p
(
S∗(F 1), F 1

)
− p

(
S∗(F 1), F τ

)
∥∞ − ε

2
| H1,j∗

]
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≤ K(∆ + 1) exp
(
− 2∆(∥p(S∗(F 1), F 1)− p(S∗(F 1), F τ )∥∞ − ε

2
)2
)
.

Hence, the following inequalities hold:

EPπ
τ

[
(k̂ − τ)+

]
≤ 2∆

(
1−K(∆ + 1) exp(−2∆(∥p(S∗(F 1), F 1)− p(S∗(F 1), F τ )∥∞ − ε

2

)2
)
)−1

(a)

≤ 2∆
(
1−K(∆ + 1) exp(−2∆(

√
ε/2− ε/2)2)

)−1
(b)

≤ 6∆,

where (a) follows from the definition of ε together with the Pinsker’s inequality (Tsybakov 2003).

Moreover, (b) holds as long as the time horizon is large enough, that is, T ≥ t(ε,K), where t(ε,K)

is the smallest integer which guarantees that qd,j∗ < 1/2.

Step 6. Finally, we aggregate all the bounds that we obtain within the previous steps (specif-

ically, in Steps 3 and 5). Recall that ∆ = C log T , where C = 4ε−2. Thus, we derive the following

upper bound on the difference in the expected revenue achieved by the oracle and our policy:

J∗(F (N), T )− Jπ(F (N), T ) ≤ δK(1 +
ε2

4 log 2
) + 2δ∆+RA(Fb(F 1), T )

= δK(1 +
ε2

4 log 2
) + 2C log Tδ +RA(Fb(F 1), T )

≤ δK(1 +
ε2

4 log 2
) + 8ε−2δ log T +RA(Fb(F 1), T ).

Finally, we define C1 ≡ C1 (ε, δ) := δK(1 + ε2

4 log 2), and C2 ≡ C2 (ε, δ) := 8ε−2δ. Hence, by

taking the supremum over all customers’ preferences, we obtain the following bound for the regret:

sup
F (N)∈FD(F 1)

{
J∗(F (N), T )− Jπ(F (N), T )

}
≤ C1 + C2 log T +RA(Fb(F 1), T ),

for T ≥ t(ε,K), which, in turn, concludes the proof. ■
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E.C.3 Proofs for Appendix A

This section contains the proofs for the theoretical results established in Appendix A, which

addresses the case in which the post-change preferences are known by the retailer. Our analysis

proceeds in three stages. First, in Section E.C.3.1, we treat the case in which changes are passively

undetectable. Next, in Section E.C.3.2, we consider the case with passively detectable changes.

We provide both a lower bound on the minimum achievable regret for any admissible policy and

an upper bound on the regret attained by our policies. Finally, in Section E.C.3.3, we prove two

lemmas that are used within the proofs.

E.C.3.1 Proofs for Appendix A.1

This section establishes proofs for Proposition 7 and Proposition 8, about achievable perfor-

mances and regret of Algorithm 4. Then, we provide the proof of Lemma 1. To begin, we fix T ≥ 2

and a sub-segment size ∆ ∈ [T ]. Also, let T̃ := ⌈T/∆⌉ denote the number of time sub-segments.

We define the sub-segment boundaries ℓ1 := 1, ℓj := 1 + (j − 1)∆ for j ≥ 2, and ℓT̃ := T . We

assume throughout that F 1 and F τ are such that that the preferences F (N) they induce belong to

FA. For any policy π ∈ P, let Pπℓj denote the probability distribution of the customer purchase

decisions over T periods when the change occurs at τ = ℓj .

The analysis proceeds through two essential lemmas that address distinct policy classes. First,

Lemma 4 analyzes policies that do not sufficiently explore alternative assortments within at least one

sub-segment. Then, Lemma 5 considers policies that are always guaranteed to sufficiently explore

new product assortments. We quantify exploration intensity through the KL divergence between

successive scenarios Pπℓj+1
and Pπℓj . From a high-level perspective, a small KL divergence indicates

a minimal difference in customers’ preferences across adjacent change points, suggesting limited

exploration within the corresponding segment. Importantly, our approach relies on probabilistic

arguments by Besbes and Zeevi (2011) and by Tsybakov (2003).

Lemma 4. Assume that there exist an admissible policy π ∈ P and a constant β > 0 that satisfy:

min
1≤j≤T̃−1

{
K
(
Pπℓj+1

,Pπℓj
)}

≤ β.

Then, there exists a finite constant C ≡ C(γ, β) > 0 such that:

sup
F (N)∈F̃U

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ C∆.
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Proof. We fix some preferences F 1 and F τ and consider the induced preferences F (N) ∈ F̃U (F 1, F τ ).

Also, we assume that there exist an admissible policy π ∈ P and a constant β > 0 such that:

min
1≤j≤T̃−1

{K(Pπℓj+1
,Pπℓj )} ≤ β.

Next, let i0 ∈ [T̃−1] be such that K(Pπℓi0+1
,Pπℓi0 ) ≤ β. We consider the following two hypotheses:

H0 : τ /∈ {ℓi0 , . . . , ℓi0+1 − 1} ,

H1 : τ = ℓi0 .

Under the probability measure Pπℓi0 , the distribution of the customer’s purchase decisions undergoes

a shift at ℓi0 , and changes from F 1 to F τ . Conversely, under Pπℓi0+1
, no such shift occurs within the

interval {ℓi0 , . . . , ℓi0+1 − 1}.

Next, we define an arbitrary admissible decision rule:

ϕ : Sℓi0+1−1 × {0, 1}ℓi0+1−1 → {0, 1},

where ϕ = 0 indicates that “no change,” occurs before ℓi0+1 − 1, which essentially implies that

τ /∈ {ℓi0 , . . . , ℓi0+1 − 1}, whereas ϕ = 1 indicates that a change has occurred precisely at ℓi0 .

Thus, ϕ maps the set of all possible assortments and the corresponding purchase decisions observed

from customers 1 to ℓi0+1 − 1 to {0, 1}. According to Theorem 2.2 of Tsybakov 2003, we have:

inf
ϕ

max{Pπℓi0 [ϕ ̸= 1] ,Pπℓi0+1
[ϕ ̸= 0]} ≥ max

{1
4
exp(−β),

1−
√
β/2

2

}
.

In other words, the following inequality holds:

inf
ϕ

min{Pπℓi0 [ϕ = 0] ,Pπℓi0+1
[ϕ = 1]} ≥ max

{1
4
exp(−β),

1−
√
β/2

2

}
.

In addition, we define the following constant:

C̃ :=
γ

4
max

{1
4
exp (−β) ,

1−
√
β/2

2

}
,

where γ > 0 by definition.

Then, suppose, for the sake of contradiction, that the following inequality holds:

sup
k∈{i0,i0+1}

EPπ
ℓk

[
J∗(F (N), T )− J π(F (N), T )

]
≤ C̃∆. (E.C.33)

Next, consider the following decision rule:

ϕ (π) =


0 if

ℓi0+1−1∑
t=ℓi0

(
r(S∗(F 1), F 1)− r(ψt(Ht−1), F

1)
)
≤ γ∆/2,

1 if
ℓi0+1−1∑
t=ℓi0

(
r(S∗(F 1), F 1)− r(ψt(Ht−1), F

1)
)
> γ∆/2,

where the decision rule ϕ implicitly depends on the observed realization of the purchase decisions
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through the filtration (Ht)
ℓi0+1−1
t=0 . We complete the proof in three steps by deriving upper bounds

for both the Type I and II errors of our decision rule, and then combining them.

Step 1: We first establish an upper bound for the Type I error probability, the probability

of incorrectly rejecting the null hypothesis by indicating a change when none has occurred before

sub-segment i0 + 1. The probability of the Type I error can be formally expressed as:

Pπℓi0+1

[
ϕ = 1

]
= Pπℓi0+1

[ ℓi0+1−1∑
t=ℓi0

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )

>
γ

2
∆
]

(a)

≤ 2

γ∆
EPπ

ℓi0+1

[ ℓi0+1−1∑
t=ℓi0

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )]

(b)

≤ 2

γ∆
EPπ

ℓi0+1

[
J∗(F (N), T )− J π(F (N), T )

]
(c)

≤ 2C̃

γ
=

1

2
max

{1
4
exp(−β),

1−
√
β/2

2

}
The derivations above employ three key steps: (a) applies Markov’s inequality (Jacod and Protter

2012), (b) follows from the optimality of S∗(F 1) and the definition of J π(F (N), T ) as established

in Lemma 8, and (c) uses the bound from equation (E.C.33).

Step 2: We now establish an upper bound for the probability of the Type II error, defined as

the probability that our decision rule fails to detect a change when one has actually occurred. To

proceed, let assume that ϕ = 0. Under these conditions, the following inequality is satisfied:

ℓi0+1−1∑
t=ℓi0

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )

≤ γ∆/2.

In particular, the following inequality also holds:

ℓi0+1−1∑
t=ℓi0

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )

1
(
∥S∗(F 1)− ψt(Ht−1)∥1 ≥ 1

)
≤ γ∆/2,

and, we obtain the following inequality:

ℓi0+1−1∑
t=ℓi0

1
(
∥S∗(F 1)− ψt(Ht−1)∥1 ≥ 1

)
≤ γ∆

2γ
= ∆/2.

Therefore, we obtain the following sequence of inequalities:

ℓi0+1−1∑
t=ℓi0

(
r (S∗(F τ ), F τ )− r (ψt(Ht−1), F

τ )
)
≥ γ

ℓi0+1−1∑
t=ℓi0

1
[
∥S∗(F 1)− ψt(Ht−1)∥1 ≤ 0

]

= γ

ℓi0+1−1∑
t=ℓi0

(
1− 1

[
∥S∗(F 1)− ψt(Ht−1)∥1 ≥ 1

] )
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= γ
(
∆−

ℓi0+1−1∑
t=ℓi0

1
[
∥S∗(F 1)− ψt(Ht−1)∥1 ≥ 1

] )
= γ

(
∆−∆/2

)
= γ∆/2.

As a consequence, we derive the following upper bounds for the Type II errors of ϕ:

Pπℓi0
[
ϕ = 0

]
≤ Pπℓi0

[ ℓi0+1−1∑
t=ℓi0

(
r (S∗(F τ ), F τ )− r (ψt(Ht−1), F

τ )
)
≥ γ∆

2

]
(a)

≤ 2

γ∆
EPπ

ℓi0

[ ℓi0+1−1∑
t=ℓi0

(
r (S∗(F τ ), F τ )− r (ψt(Ht−1), F

τ )
)]

(b)

≤ 2

γ∆
EPπ

ℓi0

[
J∗(F (N), T )− J π(F (N), T )

] (c)

≤ 2

γ∆
C̃∆ =

1

2
max

{1
4
exp(−β),

1−
√
β/2

2

}
,

where (a) follows from Markov’s inequality (Jacod and Protter 2012), while (b) follows from the

optimality of S∗(F τ ) and Lemma 8. Finally the last inequality (c) follows from (E.C.33).

Step 3: Consequently, based on the results from both Step 1 and Step 2, we conclude that the

infimum of the Type I and Type II errors is bounded above as follows:

inf
ϕ

min
{
Pπℓi0 [ϕ = 0] ,Pπℓi0+1

[ϕ = 1]
}
≤ 1

2
max

{1
4
exp(−β),

1−
√
β/2

2

}
,

which is a contradiction with (E.C.33). Hence, the following inequality must hold:

sup
k∈{i0,i0+1}

EPπ
ℓk

[
J∗(F (N), T )− J π(F (N), T )

]
> C̃∆.

Therefore, we conclude that:

sup
F (N)∈F̃U

{
J∗(F (N), T )− Jπ(F (N), T )

}
> C (γ, β)∆,

where C (γ, β) = γ
4 max

{
1
4 exp(−β),

1−
√
β/2

2

}
, where β is as defined in the proposition. ■

We proceed to establish a lower bound on the attainable regret for admissible policies that

exhibit adequate exploration within each sub-segment. Formally:

Lemma 5. Assume that there exist an admissible policy π ∈ P and a constant β > 0 that satisfy:

min
1≤j≤T̃−1

{
K
(
Pπℓj+1

,Pπℓj
)}

> β.

Then, there exists a finite constant C ≡ C(γ, ϑ, β) > 0 such that:

sup
F (N)∈F̃U

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ C(T̃ − 1).
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Proof. We fix preferences F 1 and F τ and consider the induced preferences F (N) ∈ F̃U (F 1, F τ ).

Also, assume that there exist an admissible policy π ∈ P and a constant β > 0 such that:

min
1≤j≤T̃−1

{K(Pπℓj+1
,Pπℓj )} > β.

In this case, the policy is guaranteed to explore sufficiently within each time segment. Hence,

the environment can choose to change the preferences at the very last time period, i.e., τ = ℓT̃ = T .

Therefore, the following sequence of inequalities holds:

EPπ
ℓ
T̃

[
J∗(F (N), T )− J π(F (N), T )

]
= EPπ

τ

[ ℓT̃−1∑
t=1

(
r(S∗(F 1), F 1)− r(ψt(Ht−1), F

1)
)]

+ EPπ
ℓ
T̃

[ T∑
t=ℓT̃

(
r (S∗(F τ ), F τ )− r (ψt(Ht−1), F

τ )
)]

(a)

≥ EPπ
ℓ
T̃

[ ℓT̃−1∑
t=ℓ1

(
r(S∗(F 1), F 1)− r(ψt(Ht−1), F

1)
)]

=
T̃−1∑
i=1

EPπ
ℓ
T̃

[ ℓi+1−1∑
t=ℓi

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )]

(b)
=

T̃−1∑
i=1

EPπ
ℓi+1

[ ℓi+1−1∑
t=ℓi

(
r
(
S∗(F 1), F 1

)
− r

(
ψt(Ht−1), F

1
) )]

(c)

≥ γ
T̃−1∑
i=1

EPπ
ℓi+1

[ ℓi+1−1∑
t=ℓi

1
[
∥S∗(F 1)− ψt(Ht−1)∥1 ≥ 1

] ]
(d)

≥ γ
T̃−1∑
i=1

K(Pπℓj+1
,Pπℓj )

K (F 1 , F τ )
≥ γβ(T̃ − 1)

K (F 1 , F τ )
,

where (a) follows from the optimality of S∗(F τ ). For any given i ∈ [T̃ ], the distribution of the

purchase decision of customer t ∈ {ℓi, . . . , ℓi+1 − 1} is independent of the time at which the change

occurs, provided it takes place after (or at) ℓi+1, which justifies (b). The inequality (c) follows from

the definition of γ. Finally, (d) follows from Lemma 12; see (E.C.4).

Next, recall that by our initial assumption, the pre- and post-change preferences satisfy:

sup
{∣∣ log pi(S, F 1)− log pi(S, F

τ )
∣∣ : ∀ i ∈ S ∪

{
0
}
, ∀S ∈ S

}
≤ ϑ,

which indicates the maximum KL divergence is bounded above by ϑ. Accordingly, we have that:

max
{
K(F 1 , F τ ; S) : S ∈ S

}
≤ ϑ.

Finally, we obtain the following inequality on the difference between the expected revenue
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obtained by the oracle and by the policy π:

sup
F (N)∈F̃U

EPπ
ℓ
T̃

[
J∗(F (N), T )− J π(F (N), T )

]
≥ C(T̃ − 1),

where C ≡ C(γ, ϑ, β) := γβ
ϑ . Therefore, we conclude the proof. ■

We now present the proof of Proposition 7. The proof follows from the observation that for any

given β > 0, the conditions of either Lemma 4 or Lemma 5 must be satisfied. The proposition’s

conclusion therefore follows directly from the application of the relevant lemma.

Proof of Proposition 7. For T ≥ 2, we define ∆ = ⌈T 1/2⌉. Consequently, we have ∆ ≥ T 1/2 and

T̃−1 ≥ 1
6

√
T . Next, we fix β = 1. For any policy, we apply either Lemma 4 or Lemma 5, depending

on whether the policy explores sufficiently or not.

As a result, the following inequality holds:

sup
F (N)∈F̃U

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ min

{
C(γ, 1)∆, C(γ, ϑ, 1)(T̃ − 1)

}
≥ C(γ, ϑ)

√
T ,

where C(γ, ϑ) = min
{
C(γ, 1), 16C(γ, ϑ, 1)

}
. Therefore, we conclude the proof. ■

We now present the proof for the upper bound on the regret achieved by the active-monitoring-

then-optimize policy, as described in Algorithm 4. Formally, we provide the proof of Proposition 8.

Proof of Proposition 8. Let T ≥ 2, a pair (F 1, F τ ) be such that the induced preferences F (N) belong

to FU (F 1, F τ ) so that they cannot be distinguished at S∗(F 1). Define α ≡ (αI, αII) as the two

levels of control for the probability of the Type I and II errors, respectively. Furthermore, we define

D ≡ D(α) as the smallest constant satisfying the following inequalities:

D(α) ≥ max
{
1,− log(αI)(2 log(2))

−1
}
· K
(
F 1 , F τ ; S∗(F 1)

)−2
,

D(α) ≥ max
{
1/2,− log(αII/2)(2 log(2))

−1
}
· K
(
F τ , F 1 ; S∗(F 1)

)−2
.

Next, we fix some S ∈ S such that K(F 1 , F τ ; S) > 0, which is used as an input for π, the

active-monitoring-then-optimize policy, which is described in Algorithm 4. We denote by k̂ the

stopping rule that is used within the policy to detect the change. Specifically:

k̂ℓj (Hℓj−1) := ℓj+11(Λ̂ℓj < 0),

where ℓ0 = 1, and ℓj+1 = ℓj +∆o +∆e (recall that ∆o = D
√
T and ∆e = D log T ), for j ∈ [T̃ − 1].

Also, we define T̃ := ⌈T/∆⌉, for ∆ = ∆o + ∆e. Then, we denote by j∗ the index such that

ℓj∗ < τ ≤ ℓj∗+1, where ℓT̃+1 = +∞ by convention. We divide the proof into 7 smaller steps.
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Step 1. In the following, we denote the assortment strategy obtained through the policy by ψt,

for t ∈ [T ]. We omit the dependence of the policy on the filtration (Ht)
T
t=1. Then, we derive the

following sequence of inequalities for the regret of the policy:

J∗(F (N), T )− Jπ(F (N), T ) = EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1)− r(ψt, F

1)
]

+ EPπ
τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(ψt, F

τ )
)]

= EPπ
τ

[ τ−1∑
t=1

(
r
(
S∗(F 1), F 1

)
− r

(
ψt, F

1
) )

1
(
ψt ∈ {S, S∗(F τ )}

)]
+ EPπ

τ

[ T∑
t=τ

(
r
(
S∗(F τ ), F τ

)
− r
(
ψt, F

τ
)))

1
(
ψt ∈

{
S, S∗(F 1)

}) ]
≤ δ · EPπ

τ

[ T∑
t=1

1
(
ψt = S

)]
+ δ · EPπ

τ

[ τ−1∑
t=1

1
(
ψ = S∗(F τ )

)]
+ δ · EPπ

τ

[ T∑
t=τ

1
(
ψ = S∗(F 1)

)]
,

≤ δ · EPπ
τ

[ T∑
t=1

1
(
ψt = S

)]
+ δ · EPπ

τ

[
(k̂ − τ)+

]
+ δ · EPπ

τ

[
(τ − k̂)+

]
.

Step 2. We begin by providing an upper bound to EPπ
τ

[
(τ − k̂)+

]
. Next, for j ∈ [j∗], we denote

by qf,j the probability of a false alarm (i.e., the Type I error) at time t = ℓj+1. Then, the following

sequence of inequalities holds:

EPπ
τ

[
(τ − k̂)+

]
=

τ−1∑
u=1

Pπτ
[
(τ − k̂)+ ≥ u

]
=

τ−1∑
u=1

Pπτ
[
k̂ ≤ τ − u

]
(a)

≤
j∗∑
j=1

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋃
m=1

{k̂ = ℓm + 1}
]

≤
j∗∑
j=1

ℓj+1−1∑
i=ℓj

j∑
m=1

Pπτ
[
k̂ = ℓm + 1

] (b)

≤
j∗−1∑
j=1

ℓj+1−1∑
ℓ=ℓj

j∑
m=1

qf,j =

j∗−1∑
j=1

(∆o +∆e) jqf,j ,

where (a) follows from that τ ≤ ℓj∗+1 and the definition of our stopping-time random variable.

Then, (b) follows from the definition of the Type I error and the fact that ℓj∗ < τ ≤ ℓj∗+1.

Step 3. Next, we derive an upper bound for the probability of the Type I error qf,j , for

j ∈ [T̃ − 1]. To proceed, we first fix some index j ∈ [T̃ − 1]. Then, assume that the following

purchase decisions Zℓj+1−∆e−1, . . . , Zℓj+1−1 for customer ℓj+1 − ∆e − 1 to ℓj+1 − 1 are available.
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Given these purchase decisions, we consider the following two statistical hypothesis:

H0,j : Z
ℓj+1−∆e−1, . . . , Zℓj+1−1 ∼ F 1 (· | S) ,

H1,j : Z
ℓj+1−∆e−1, . . . , Zℓj+1−1 ∼ F τ (· | S) .

Next, we define the normalized log-likelihood ratio test Λ̂ℓj as follows:

Λ̂ℓj :=
1

∆e

ℓj+1−1∑
u=ℓj+1−∆e−1

log

(
F 1(Zu | S)
F τ (Zu | S)

)
,

which is guaranteed to be well-defined by the definition of F .

Then, by the definition of probability of the Type I error, we have that qf,j := P[Λ̂ℓj < 0 | H0,j ].

Moreover, if we condition on the event that H0,j is true, then we obtain the following equation for

the expected value of the log-likelihood test:

EH0,j [Λ̂ℓj ] = EF 1

[ 1

∆e

ℓj+1−1∑
u=ℓj+1−∆e−1

log

(
F 1 (Zu | S)
F τ (Zu | S)

)
|S
]
= K

(
F 1 , F τ ; S

)
.

Consequently, we obtain the following sequence of inequalities:

qf,j = P
[
Λ̂ℓj − EH0,j [Λ̂ℓj ] < −EH0,j [Λ̂ℓj ] | H0,ℓ

]
≤ P

[ 1

∆e

ℓj+1−1∑
u=ℓj+1−∆e−1

log

(
F 1 (Zu | S)
F τ (Zu | S)

)
− EH0,j [Λ̂ℓj ] ≤ −EH0,j [Λ̂ℓj ] | H0,j

]
(a)

≤ exp(−2∆e

(
EH0,j [Λ̂ℓj ]

)2
) = exp(−2∆eK(F 1 , F τ ; S)2),

where (a) follows from the Hoeffding’s inequality.

Therefore, are able to derive the following chain of inequalities:

EPπ
τ

[
(τ − k̂)+

]
≤ (∆e +∆o)

j∗ (j∗ − 1)

2
exp

(
− 2∆eK(F 1 , F τ ; S)2

)
≤ (∆e +∆o)

T̃ (T̃ − 1)

2
exp

(
− 2∆eK(F 1 , F τ ; S)2

)
≤ T 2

2(∆e +∆o)
exp

(
− 2∆eK(F 1 , F τ ; S)2

)
≤ T 2

2D(log (T ) +
√
T )
T−2CK(F 1 , F τ ;S)2

(a)

≤ T

2D(log (T ) +
√
T )

≤ 1

4D

√
T ,

where (a) follows from the definition of constant D ≡ D(α) as used in Algorithm 4.

Step 4. Next, we derive an upper bound for EPπ
τ

[
(k̂ − τ)+

]
. To proceed, we denote by the

probability of the Type II error qd,j of the statistical test for the sub-segment j. Specifically, we
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obtain the following sequence of inequalities:

EPπ
τ

[
(k̂ − τ)+

]
=

T−τ+1∑
u=0

Pπτ
[
k̂ ≥ τ + u

]
≤

T̃−1∑
j=j∗

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗

{k̂ ̸= ℓm + 1}
]

(a)

≤
T̃−1∑

j=j∗+2

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗+2

{k̂ ̸= im + 1}
]
+ 3 (∆e +∆o)

(b)
= (∆e +∆o)

(
3 +

T̃−1∑
j=j∗+2

(qd,j∗+2)
j−j∗−1 )

= (∆e +∆o)
(
3 + qd,j∗+2

1− (qd,j∗+2)
T̃−j∗

1− qd,j∗+2

)
≤ 3 (∆e +∆o)

1− qd,j∗+2
,

where (a) follows from the change could be anywhere within segment {ℓj∗ , . . . , ℓj∗+1 − 1}. More-

over, (b) holds since qd,j = qd,j∗+2, for all j ∈ {j∗+2, . . . , T̃}. Indeed, the probability of the Type II

error only depends on the fact that the change happens, but not when it happens.

Step 5. Next, we derive an upper bound for the probability of the Type II error. To proceed,

we fix some index j ∈ {j∗ + 2, . . . , T̃ − 1}. Then, by the definition of the Type II error, we have

that qd,j = PH1,j

[
Λ̂ℓj ≥ 0

]
. Moreover, we use similar arguments as earlier, and, in particular, the

Hoeffding’s inequality, to obtain the following upper bound:

PH1,j

[
Λ̂ℓj ≥ 0

]
= P

[
Λ̂ℓj − EH1,j [Λ̂ℓj ] ≥ −EH1,j [Λ̂ℓj ] |H1,j

]
≤ 2 exp(−2∆eK(F τ , F 1 ; S)2).

Therefore, we arrive at the following inequality:

1

1− qd,j
≤
[
1− 2 exp(−2∆eK(F τ , F 1 ; S)2)

]−1
.

Consequently, we can derive an upper bound for the detection delay. Formally, we obtain:

EPπ
τ
[(k̂ − τ)+] ≤ 3(∆e +∆o)

[
1− 2 exp(−2∆eK(F τ , F 1 ; S)2)

]−1
(a)

≤ 3 (∆e +∆o) ≤ 6D
√
T ,

where (a) follows from the choice of constant D.

Step 6. We now establish the final upper bound necessary for the proof. Specifically, we have:

T∑
t=1

EPπ
τ

[
1(ψt = S)

]
≤ (T̃ − 1)∆e ≤

∆eT

∆e +∆o
≤ T log T√

T + log T
≤

√
T log T,

which provides the desired bound on the summation term.

Step 7. With all required bounds in place, we now bound the difference between the expected

revenue achieved by the oracle and the expected revenue of our policy. Specifically, we have:

J∗(F (N), T )− Jπ(F (N), T ) ≤ δ
(√
T log T +

1

4D

√
T + 6D

√
T
)

= δ
√
T log T

(
1 +

1

4D log(T )
+ 6D

1

log(T )

)
≤ δ

√
T log T

(
1 +

1

4D
+ 6D

)
,
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where we obtain the desired result by defining some constant C ≡ C(δ, α, S) > 0. Specifically, if

we define C := δ(1 + (4D(α))−1 + 6D(α)
)
, then we conclude the proof. ■

Finally, we prove Lemma 1, which establishes the theoretical guarantees for our proposed proce-

dure to identify test assortments capable of distinguishing between pre- and post-change preferences.

Proof of Lemma 1. Let T denote Algorithm 5 as in the lemma for given parameters S0 ∈ S, K > 0,

and z ∈ {zSEP, zREV}. In the worst case, the procedure must examine all k-flip neighborhood of

S0, for k ∈ [K]. Consequently, the algorithm terminates after enumerating at most

K∑
k=1

(
K

k

)
= O(NK)

possible assortments, establishing its worst-case running-time.

Next, let S∗ be the assortment returned by the procedure at iteration k ∈ [K]. By construction,

we have z(Nk(S
0)) > 0. Thus, we obtain z({S∗}) > 0, which concludes the proof. ■

E.C.3.2 Proofs for Appendix A.2

Next, we establish a lower bound on achievable performance and an upper bound on the regret

attained by Algorithm 6. Specifically, we present proofs for Proposition 9 and 10, which rely on

two technical results, namely, Lemmas 6 and 7 that are proved in (E.C.3.3).

Proof of Proposition 9. We fix F 1 and F τ such that the induced preferences F (N) belong to FA. Let

π ∈ P represent a non-anticipatory policy characterized by the assortment mapping ψt(Ht−1) ∈ S

for each t ∈ [T ]. The random vector of consumer purchasing decisions is defined on probability

space (Ω,B,P). Given the filtration (Ht)
T
t=0, the random variable J π(F (N), T ) is similarly defined

on this space (refer to the discussion in Lemma 8). For an arbitrary η > 0, we define:

Bη :=
{
ω ∈ Ω : J∗(F (N), T )− J π(F (N), T ) < η.

}
.

We define j0 := ⌈η/γ⌉. Moreover, we introduce k̂1, . . . k̂T , which are defined as follows:

k̂1 := min
{
1 ≤ t ≤ T : {ψt(Ht−1) = S∗(F τ )} ∪ {t = T}

}
,

and, for i ≥ 1:

k̂i+1 :=


min

{
k̂i < t ≤ T : {ψt(Ht−1) = S∗(F τ )} ∪ {t = T}

}
, if k̂i < T,

T, if k̂i ≥ T.

Next, we define the following stopping rule k̂∗ := k̂j0 to estimate the change-time τ .
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Lemma 6. For any ω ∈ Bη, we have: 0 ≤ k̂∗ − τ ≤ 2j0.

By leveraging Lemma 6, we establish the following chain of set inclusions:

Bη ⊆
{
ω ∈ Ω : 0 ≤ k̂∗ − τ ≤ 2j0

}
⊆
{
ω ∈ Ω :

∣∣k̂∗ − τ
∣∣ ≤ 2j0

}
.

Consequently, the following inequality is valid:

Pπτ
[
Bη
]
≤ Pπτ

[∣∣k̂∗ − τ
∣∣ ≤ 2j0

]
,

and, by considering the complementary of Bη, denoted by Bc
η, we obtain the following inequality:

Pπτ
[
Bc
η

]
≥ Pπτ

[∣∣k̂∗ − τ
∣∣ > 2j0

]
∀ τ ∈ [T + 1].

Hence, since the former inequality holds for any τ ∈ [T + 1], the following inequality holds:

sup
1≤τ≤T+1

Pπτ
[
Bc
η

]
≥ sup

1≤τ≤T+1
Pπτ
[∣∣k̂∗ − τ

∣∣ > 2j0
]
.

Lemma 7. There exists C̃ ≡ C̃(ϑ) > 0 and α(ϑ) > 0, then, any admissible stopping rule k̂ with

respect to the history (Ht−1)
T
t=1 must satisfy:

sup
1≤τ≤T

Pπτ
[∣∣k̂ − τ

∣∣ > C̃ log T
]
≥ α.

We fix η :=
(
C1 log T − γ

)+
, where C1 = C̃γ

2 , and C̃ ≡ C̃(ϑ) is the constant from Lemma 7.

Then, we derive the following sequence of inequalities:

2j0 = 2
⌈
η/γ

⌉
= 2
⌈(C1 log T − γ

)+
γ

⌉
= 2
⌈( C̃

2
log T − 1

)+⌉ ≤ C̃ log T.

We can now establish a sequence of inequalities that lead to our main result. First, applying

our previous findings and Lemma 7, we obtain:

sup
1≤τ≤T

Pπτ
[
Bc
η

]
≥ sup

1≤τ≤T
Pπτ
[∣∣k̂ − τ

∣∣ > 2j0
]
≥ sup

1≤τ≤T
Pπτ
[∣∣k̂ − τ

∣∣ > C̃ log T
]
≥ α.

This chain of inequalities demonstrates that the probability of the complement of Bη is bounded

below by α, which plays an important role for establishing our regret bound. Formally:

sup
F (N)∈F(F 1,F τ )

{
J∗(F (N), T )− Jπ(F (N), T )

}
≥ sup

1≤τ≤T
ηPπτ

[
Bc
η

]
≥ sup

1≤τ≤T
α
(
C1 log T − γ

)+ (a)
= C log T,

where equality (a) holds for all T ≥ exp
(
4
C

)
for C ≡ C(γ, ϑ) := αγ C̃4 .

Both constants C and α depend only on parameters γ and ϑ, and are independent of the specific

choice of preferences F 1 and F τ . This observation completes the proof. ■

Next, we turn our attention to deriving an upper bound on the regret achieved by the passive-

monitoring-then-optimize policy. Recall that this policy is formally defined in Algorithm 6.
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Proof of Proposition 10. Assume that T ≥ 2, F 1 and F τ are such that the preferences F (N) they

induce belong to FD. Define α ≡ (αI, αII) as the two levels of control for the Type I and II errors,

respectively. We define D ≡ D(α) as the smallest constant satisfying the following inequalities:

D(α) ≥ max
{
1,− log(αI)(2 log(2))

−1
}
K
(
F 1 , F τ ; S∗(F 1)

)−2
,

D(α) ≥ max
{
1,− log(αII/2)(2 log(2))

−1
}
K
(
F τ , F 1 ; S∗(F 1)

)−2
.

We define the customer batch size, denoted by ∆ := D log T , as specified in Algorithm 6. Let

ℓ1 := 1, and define ℓj+1 := ℓj +∆ for j ∈ [T̃ − 1], with ℓT̃ := T , where T̃ := ⌈T/∆⌉. Additionally,

we denote by j∗ the index such that ℓj∗ < τ ≤ ℓj∗+1, where ℓT̃+1 := ∞ by convention. For the

statistical test used in policy π, we introduce Λ̂ℓj as the statistic (log-likelihood) computed for

customers belonging to the time segment j. We also define k̂ as the stopping rule employed in

policy π ≡ π(D,F 1, F τ ) from Algorithm 6. Formally, the stopping rule is given by:

k̂ℓj (Hℓj−1) := ℓj+11
(
Λ̂ℓj < 0

)
.

Step 1. In the following, we denote by ψt the assortment strategy for t ∈ [T ] corresponding

to the policy π. For clarity, we omit the dependence of the policy on the filtration (Ht)
T
t=0. We

then bound the difference in the expected revenue between the oracle and our policy in terms of

the proposed stopping rule. Specifically, we derive the following sequence of inequalities:

J∗(F (N), T )− Jπ(F (N), T ) = EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1) + r(ψt, F

1)
)]

− EPπ
τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ ) + r(ψt, F

τ )
)]

= EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1)− r

(
S∗(F τ ), F 1

))
1
(
ψt = S∗(F τ )

)]
+ EPπ

τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(S∗(F 1), F τ )

)
1
(
ψt = S∗(F 1)

)]
≤ EPπ

τ

[(
k̂ − τ

)+](
r(S∗(F τ ), F τ )− r(S∗(F 1), F τ )

)
+ EPπ

τ

[(
τ − k̂

)+](
r(S∗(F 1), F 1)− r(S∗(F τ ), F 1)

)
.

Consequently, we obtain the following upper bound for the difference between the expected

revenue obtained by the oracle and the one obtained by policy π:

J∗(F (N), T )− Jπ(F (N), T ) ≤ δ
(
EPπ

τ

[
(k̂ − τ)+

]
+ EPπ

τ

[
(τ − k̂)+

])
.

In the following steps, we derive an upper bound for both EPπ
τ

[
(k̂ − τ)+

]
and EPπ

τ

[
(τ − k̂)+

]
.
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Then, we derive the appropriate upper bound for the regret of policy π.

Step 2. We proceed to analyze the expected detection advance EPπ
τ

[(
τ − k̂

)+]
by relating it to

the probability of the Type I error. Let qf,j denote the probability of a false alarm at time t = ℓj+1

for each j ∈ [j∗]. We establish the following sequence of inequalities:

EPπ
τ

[
(τ − k̂)+

]
=

τ−1∑
u=1

Pπτ
[
(τ − k̂)+ ≥ u

]
=

τ−1∑
u=1

Pπτ
[
k̂ ≤ τ − u

]
(a)

≤
j∗∑
j=1

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋃
m=1

{
k̂ = ℓm + 1

}]

≤
j∗∑
j=1

ℓj+1−1∑
i=ℓj

j∑
m=1

Pπτ
[
k̂ = ℓm + 1

] (b)

≤
j∗−1∑
j=1

ℓj+1−1∑
ℓ=ℓj

j∑
m=1

qf,j =

j∗−1∑
j=1

∆jqf,j ,

where (a) follows from that τ ≤ ℓj∗+1 and the definition of our stopping-time random variable.

Then, (b) follows from the definition of the Type I error and the fact that ℓj∗ < τ ≤ ℓj∗+1.

Step 3. We find a bound for qf,j , for all j ∈ [T̃ − 1]. To begin, we fix j ∈ [T̃ − 1] and assume

that the purchase decisions Zℓj , . . . , Zℓj+1−1 are available. We consider the hypothesis test:

H0,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F 1 |S∗(F 1),

H1,j : Z
ℓj , . . . , Zℓj+1−1 ∼ F τ |S∗(F 1).

Moreover, we define the normalized log-likelihood ratio test Λ̂ℓj as follows:

Λ̂ℓj :=
1

∆

ℓj+1−1∑
u=ℓj

(
logF 1

(
Zu | S∗(F 1)

)
− logF τ

(
Zu | S∗(F 1)

))
,

which is well-defined by definition of F .

Moreover, by definition of the probability of the Type I error, we have that: qf,j := P[Λ̂ℓj <

0 | H0,j ]. This expression corresponds to the probability of rejecting the null hypothesis when it is

assumed to be true. Next, if we assume that H0,j is true, then we have:

EH0,j [Λ̂ℓj ] = EF 1

[ 1
∆

ℓj+1−1∑
u=ℓj

(
logF 1

(
Zu | S∗(F 1)

)
− logF τ

(
Zu | S∗(F 1)

))
|S∗(F 1)

]
= K(F 1 , F τ ; S∗(F 1)).

Therefore, we obtain the following sequence of inequalities:

qf,j = P
[
Λ̂ℓj − EH0,j [Λ̂ℓj ] < −EH0,j [Λ̂ℓj ] | H0,ℓ

]
(a)

≤ exp
(
− 2∆

(
EH0,j [Λ̂ℓj ]

)2)
= exp

(
− 2∆K(F 1 , F τ ;S∗(F 1)

)2
)
(b)

≤ exp
(
(log(αI)/ log(2)) log T

)
= T−2α

− 1
2 log 2

I

(c)

≤ α
log T
log 2

I ≤ αI,
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where (a) follows from the Hoeffding’s inequality. Then, (b) follows by the definition of ∆ ≡

D(α) log T , and (c) follows from that log T/ log 2 ≥ 1 for all T ≥ 2. Also, as a side observation, our

test is guaranteed to control the Type I error at level αI for any T ≥ 2.

Therefore, we conclude that:

EEπ
τ

[
(τ − k̂)+

]
≤ ∆

j∗(j∗ − 1)

2
T−2α

− 1
2 log 2

I ≤ ∆
T̃ (T̃ − 1)

2
T−2α

− 1
2 log 2

I ≤ 1

2∆
α
− 1

2 log 2

I .

Step 4. We proceed to analyze the expected detection delay EPπ
τ

[
(k̂ − τ)+

]
by relating it to

the probability of the Type II errors in our sequential testing procedure. Given the probability of

the Type II error qd,j corresponding to the statistical test from policy π at within sub-segment j,

we obtain the following upper bound:

EPπ
τ

[(
k̂ − τ

)+]
=

T−τ+1∑
u=0

Pπτ
[
k̂ ≥ τ + u

]
≤

T̃−1∑
j=j∗

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗

{
k̂ ̸= ℓm + 1

}]
(a)

≤
T̃−1∑

j=j∗+2

ℓj+1−1∑
ℓ=ℓj

Pπτ
[ j⋂
m=j∗+2

{
k̂ ̸= ℓm + 1

}]
+ 3∆

(b)
= ∆

(
3 +

T̃−1∑
j=j∗+2

(
qd,j∗+2

)j−j∗−1)
= ∆

(
3 + qd,j∗+2

1−
(
qd,j∗+2

)T̃−j∗
1− qd,j∗+2

)
≤ 3∆

1− qd,j∗+2
,

where (a) follows from the change could be anywhere within segment {ℓj∗ , . . . , ℓj∗+1 − 1}. More-

over, (b) holds since qd,j = qd,j∗+2, for all j ∈ {j∗+2, . . . , T̃}. Indeed, the probability of the Type II

error only depends on the fact that the change happens.

Step 5. This step consists in finding an upper bound for the probability of the Type II error.

We fix some index j ∈ {j∗ + 2, . . . , T̃ − 1}. Then, the probability of the Type II error is given by:

qd,j := PH1,j

[
Λ̂ℓj ≥ 0

]
= PH1,j

[
Λ̂ℓj > 0

]
+ PH1,j

[
Λ̂ℓj = 0

]
.

And, similarly as before, we use the Hoeffding’s inequality and obtain the following upper bound

for the first part of the Type II error probability:

PH1,j

[
Λ̂ℓj > 0

]
= PH1,j

[
Λ̂ℓj − EH1,j

[
Λ̂ℓj
]
> −EH1,j

[
Λ̂ℓj
]]

≤ exp
(
− 2∆K(F τ , F 1 ; S∗(F 1))2

)
.

Using a similar approach to find an upper bound for PH1,j

[
Λ̂ℓj = 0

]
, we obtain that:

qd,j ≤ 2 exp
(
− 2∆K(F τ , F 1 ; S∗(F 1))2

)
≤ αII.

Therefore, we have that: 1

1− qd,j
≤ (1− αII)

−1.
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Consequently, we obtain the following upper bound for the error made by the stopping time k̂:

EPπ
τ

[
(k̂ − τ)+

]
≤ 3∆(1− αII)

−1.

Finally, we conclude that the difference in the expected revenue between the oracle strategy

and π is bounded above as follows:

J∗(F (N), T )− Jπ(F (N), T ) ≤ δ
(
EPπ

τ

[
(k̂ − τ)+

]
+ EPπ

τ

[
(τ − k̂)+

])
≤ δ
( 1

2∆
α
− 1

2 log 2

I +
3∆

1− αII

)
≤ C1 + C2 log T,

where C1 := C1(δ, αI) = δ(2 log 2)−1α
− 1

2 log 2

I and C2 := C2(δ, αII) = 3δ(1 − αII)
−1. Finally, as

this constant is independent of F 1 and F τ , by taking the supremum over all possible preferences

F (N) ∈ F(F 1, F τ ), we obtain the desired upper bound for the minimax regret of the policy π.

Therefore, we conclude the proof. ■

E.C.3.3 Proofs of Lemmas 6 and 7

In this section, we provide the proofs of some essential lemmas that are used within the proof

of the above propositions. Specifically, we provide the proofs of Lemmas 6 and 7.

Proof of Lemma 6. We establish the statement using a proof by contradiction. Assume, for the

sake of contradiction, that either k̂∗−τ < 0 or k̂∗−τ > 2j0. We analyze these two cases separately.

Case 1: Suppose that k̂∗ − τ > 2j0. Then, the following inequality holds:

k̂∗∑
t=τ

1
(
ψt(Ht−1) ̸= S∗(F τ )

)
=

k̂j0∑
t=τ

1
(
ψt(Ht−1) ̸= S∗(F τ )

)
(a)

≥ k̂j0 − j0 > τ + j0 ≥ 1 + j0 ≥ j0
(b)

≥ η

γ
,

where (a) follows from that k̂j0 − τ > 2j0, and that the policy offers at most j0 times assortment

S∗(F τ ) in the time horizon [k̂j0 ]. Moreover, (b) follows from j0 = ⌈η/γ⌉.

Next, recall that ω ∈ Bη. Consequently, the following sequence of inequalities hold:

η > J∗(F (N), T )− J π(F (N), T ) ≥ γ
T∑
t=τ

1
(
ψt(Ht−1) ̸= S∗(F τ )

)
≥ γ

k̂∗∑
t=τ

1
(
ψt(Ht−1) ̸= S∗(F τ )

)
> γ

η

γ
= η,

which is clearly a contradiction. Therefore, we must have k̂∗ − τ ≤ 2j0.

84



Case 2. Assume that k̂∗ − τ < 0. Then, the following sequence of inequalities holds:

k̂∗∑
t=1

1
(
ψt(Ht−1) ̸= S∗(F 1)

)
≥

k̂∗∑
t=1

1
(
ψt(Ht−1) = S∗(F τ )

)
=

k̂j0∑
t=1

1
(
ψt(Ht−1) = S∗(F τ )

) (a)

≥ j0 >
η

γ
,

where (a) follows from the construction of the indices k̂i for all i ∈ [T ].

Next, since ω ∈ Bη, the following sequence of inequalities holds:

η > J∗(F (N), T )− J π(F (N), T ) ≥ γ
τ−1∑
t=1

1
(
ψt(Ht−1) ̸= S∗(F 1)

)
≥ γ

k̂∗∑
t=1

1
(
ψt(Ht−1) ̸= S∗(F 1)

)
> γ

η

γ
= η,

which is clearly a contradiction. Therefore, we have that 0 ≤ k̂∗ − τ ≤ 2j0, which, together with

the first case considered, concludes the proof. ■

Proof of Lemma 7. Our proof closely follows the approach by Besbes and Zeevi (2011), which itself

draws inspiration from Korostelev (1988). Let k̂ denote any admissible stopping rule based on the

filtration (Ht)
T
t=1. Next, we define a measure of divergence between F 1 and F τ as follows:

ϕ
(
F 1, F τ

)
:= max

{∣∣ logF 1 (z|S)− logF τ (z|S)
∣∣ : z ∈ {0, 1}N , ∥z∥1 ≤ 1, zi = 0 ∀ i /∈ S, S ∈ S

}
,

which is well defined as 0 < ϕ
(
F 1, F τ

)
< ϑ.

The lower bound 0 < ϕ
(
F 1, F τ

)
follows from the definition of FD (as preferences are passively

detectable). Indeed, assume for the sake of contradiction that ϕ
(
F 1, F τ

)
= 0. Then, we have that

F 1 (z | S) = F τ (z | S) = 1 for all z and S as defined above. In particular, we have that:

K
(
F 1 , F τ ; S∗(F 1)

)
= 0,

which contradicts the assumption that the preferences F (N) induced by F 1 and F τ are in FD.

Next, we fix β ∈ (0, 1) arbitrarily, and define the constant C = (2ϑ)−1. Also, we introduce:

B (ϑ, x) := e−ϑ
x1−Cϑ

2C log(x) + 2
= e−ϑ

x
1
2

2C log(x) + 2
.

which is increasing for x, and such that lim
x→+∞

B (ϑ, x) = +∞.

Next, given β ∈ (0, 1), we construct n0 > 0 such that:

n0 = max
{
j ∈ N≥1 : B (ϑ, j) < β−2

}
.

Then, we define g (x) = x(C log(x)+1)−1. Observe that g (·) is an increasing function and that

lim
x→+∞

g (x) = +∞. Moreover, we introduce:

n1 = max
{
j ∈ N≥1 : j ≥ n0, g (j) ≥ 3/2

}
.
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Case 1. Assume that T ≥ n1. Define ∆ = ⌈C log T ⌉ and T̃ = ⌈T/∆⌉. Then, observe that

T/∆ = T
(
⌈C log T ⌉

)−1 ≥ T
(
C log T + 1

)−1
= g (T ) ≥ g (n1) ≥ 3/2,

which then implies that, T̃ ≥ 2.

Next, define ℓj = 1 + (j − 1)∆ for j ∈ [T̃ − 1], and let ℓT̃ = T . Moreover, we denote by

Z :=
(
Z1, . . . , ZT

)
the random vector corresponding to the customer’s purchase decisions over the

T time period, which is defined over some probability space (Ω,B,P). Next, we introduce a new

random variable Z̃j , for each j ∈ [T̃ ], as follows:

Z̃j =

ℓj+1−1∑
t=ℓj

(
logF 1

(
Zt | ψt (Ht−1)

)
− logF τ

(
Zt | ψt (Ht−1)

) )
.

The next step consist of showing that the following inequality holds:

min
1≤j≤T̃−1

Pπℓj
[
|k̂ − τ | > ∆/3

]
≥ 1− β.

Hence, we assume for the sake of contradiction that this inequality does not hold. That is:

min
1≤j≤T̃−1

Pπℓj
[
|k̂ − τ | > ∆/3

]
< 1− β.

Then, we define the event Aj :=
{
ω ∈ Ω : |k̂− ℓj | ≤ ∆/3

}
for j ∈ [T̃ −1]. Note that the events

Aj are disjoint as each segment {ℓj , . . . , ℓj+1 − 1} is of size ∆, and:

{
ω ∈ Ω : |k̂ − ℓT̃ | > ∆/3

}
⊃

T̃−1⋃
j=1

Aj .

Thus, the following chain of inequalities hold:

PπℓT̃
[
|k̂ − τ | > ∆/3

]
≥ PπℓT̃

[ T̃−1⋃
j=1

Aj
]
=

T̃−1∑
j=1

PπℓT̃
[
|k̂ − ℓj | ≤ ∆/3

]
=

T̃−1∑
j=1

EPπ
ℓ
T̃

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
.

Importantly, we have that 1
(
|k̂ − ℓj | ≤ ∆/3

)
is Hℓj+1−1-measurable, and its distribution does not

depend on time changes occurring after ℓj+1 − 1. Hence, the following equality holds:

EPπ
ℓ
T̃

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
= EPπ

ℓj+1

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
.

Next, for V , an Hℓj+1−1-measurable random variable, we derive the following equalities:

EPπ
ℓj

[
eZ̃jV

]
= EPπ

ℓj

[ ℓj+1−1∏
t=ℓj

F 1
(
Zt | ψt

(
Ht−1

))
F τ
(
Zt | ψt

(
Ht−1

))V ] = ∫
Ω

ℓj+1−1∏
t=ℓj

F 1
(
Zt | ψt

(
Ht−1(ω)

))
F τ
(
Zt | ψt

(
Ht−1(ω)

))V (ω)Pπℓj (ω) dω

=

∫
Ω

ℓj+1−1∏
t=ℓj

F 1
(
Zt | ψt

(
Ht−1(ω)

))
F τ
(
Zt | ψt

(
Ht−1(ω)

))V (ω)
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·
ℓj−1∏
t=1

F 1
(
Zt | ψt

(
Ht−1(ω)

)) T∏
t=ℓj

F τ
(
Zt | ψt

(
Ht−1(ω)

))
dω

= EPπ
ℓj+1

[
V
]
,

where we use a change of measure type of argument, together with Lemma 9.

Moreover, since Z̃j ≥ −∆ϑ, the following sequence of inequalities holds:

EPπ
ℓj

[
eZ̃j1

(
|k̂ − ℓj | ≤ ∆/3

)]
≥ EPπ

ℓj

[
e−∆ϑ1

(
|k̂ − ℓj | ≤ ∆/3

)]
≥ EPπ

ℓj

[
e−
(
1+C log T

)
ϑ1
(
|k̂ − ℓj | ≤ ∆/3

)]
=
e−ϑ

TCϑ
EPπ

ℓj

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
.

Consequently, we derive the following sequence of inequalities:

PπℓT̃
[
|k̂ − τ | > ∆/3

]
≥

T̃−1∑
j=1

EPπ
ℓ
T̃

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
≥

T̃−1∑
j=1

e−ϑ

TCϑ
EPπ

ℓj

[
1
(
|k̂ − ℓj | ≤ ∆/3

)]
≥
(
T̃ − 1

)
e−ϑ

TCϑ
min

1≤j≤T̃−1
Pπℓj
[
|k̂ − ℓj | ≤ ∆/3

]
.

Since T̃ − 1 ≥ T̃
2 , we can derive the following sequence of inequalities:

e−ϑT−Cϑ(T̃ − 1) ≥ e−ϑT−Cϑ T̃

2

= e−ϑT−Cϑ T

2∆
≥ e−ϑT 1−Cϑ(2 ⌈C log T ⌉)−1 ≥ B (ϑ, T ) ≥ 1

β2
,

which hold as T ≥ n1 ≥ n0.

Consequently, we obtain the following inequalities:

PπℓT̃
[
|k̂ − τ | > ∆/3

]
≥ 1

β2
min

1≤j≤T̃−1
Pπℓj
[
|k̂ − ℓj | ≤ ∆/3

]
≥ β

β2
=

1

β
> 1,

which is clearly a contradiction. Therefore, we conclude:

min
1≤j≤T̃−1

Pπℓj
[
|k̂ − τ | > ∆/3

]
≥ 1− β.

That is, for all T ≥ n1, we have:

max
1≤τ≤T

Pπτ
[
|k̂ − τ | >

⌈
C log T

⌉
/3
]
≥ 1− β,

where C = 1
2ϑ . That is, both n1, as well as C only depends on parameters ϑ.

Case 2. In the second case, we assume that T < n1. Then, we define τ1 = T − 1 and τ2 = T .

Suppose, first, that Pτ1
[
|k̂ − τ1| = 0

]
≥ 1

2 . Next, observe that:

Pπτ2
[
|k̂ − τ1| = 0

]
= Eπτ2

[
1
(
|k̂ − τ1| = 0

)]
(a)
= Eπτ1

[
exp

(
log
(F 1

(
ZT−1 | ψT−1

(
HT−2

))
F τ
(
ZT−1 | ψT−1

(
HT−2

))))1
(
|k̂ − τ1| = 0

)]
,
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where (a) is obtained through change of measure type of argument, similar to the one employed

within the Case 1. Hence, we have that:

Pπτ2
[
|k̂ − τ1| = 0

]
≥ e−ϑEPπ

τ1

[
1
(
|k̂ − τ1| = 0

)]
≥ e−ϑ

1

2
.

Therefore, we obtain the following inequalities:

Pπτ2
[
|k̂ − τ2| ≥ 1

]
= Pπτ2

[
|k̂ − T | ≥ 1

]
≥ Pπτ2

[
|k̂ −

(
T − 1

)
| = 0

]
≥ 1

2
e−ϑ.

On the other hand, if Pτ1
[
|k̂ − τ1| = 0

]
< 1

2 , then we have:

Pτ1
[
|k̂ − τ1| ≥ 1

]
>

1

2
≥ 1

2
e−ϑ.

Therefore, we obtain the following inequality:

sup
τ∈{τ1,τ2}

Pπτ
[
|k̂ − τ | ≥ 1

]
≥ 1

2
e−ϑ.

Since 1 ≥ T/n1 ≥ log(T )/n1, we have that:

sup
1≤τ≤T

Pπτ
[
|k̂ − τ | ≥ log(T )/n1

]
≥ 1

2
e−ϑ.

Finally, by combining both Case 1 and Case 2, we obtain the following result:

sup
1≤τ≤T

Pπτ
[
|k̂ − τ | ≥ C1 log T

]
≥ e−ϑ

2
≥ α,

where C̃ := min
{
C/3, 1/n1

}
and α := min

{
1−β, e−ϑ/2

}
. Moreover, both C̃ ≡ C̃(ϑ) and α ≡ α(ϑ)

only depends on ϑ, which concludes the proof. ■
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E.C.4 Preliminaries

This section presents the notations and preliminary results that underpin the theoretical analysis

in Section 5 and Appendix A. We provide formal statements and proofs of the key lemmas and

corollary highlighted in Table E.C.1.

Lemma Corollary

8, 9, 10, 11, 12 2

Table E.C.1: List of results from Appendix E.C.4

Throughout this section, we consider preferences F (N) ∈ FA in which a single abrupt shift

occurs, as defined in Section 5.1. We refer to the pre-change preferences as F 1 and the post-change

preferences as F τ . Unless otherwise specified, we assume that both F 1 and F τ are chosen such that,

for some τ ∈ N, the preferences F (N) ≡
(
F t : t ∈ N

)
satisfy F t ≡ F 1 for all t < τ , and F t ≡ F τ

for all t ≥ τ , with the additional condition that F (N) ∈ FA (or a specified subset thereof). The

variable τ ∈ [T +1] denotes the time at which the change occurs, where τ = T +1 indicates that no

change takes place. Finally, we denote by Pπτ the distribution over purchase outcomes induced by

policy π when the change occurs at time τ , evaluated over the finite horizon T . Moreover, unless

stated otherwise, we use notations consistent with those introduced in Section E.C.1.

Next, we introduce the maximum revenue separation:

δ ≡ δ(FA, T ) := sup
{
r(S̃, F t)− r(S, F t) : F (N) ∈ FA , t ∈ N , S ̸= S̃ ∈ S

}
≤ N · ∥w∥∞,

which captures the highest difference in expected revenue between any two distinct assortments.

To formally introduce our analysis, we begin by defining the random variable J π(F (N), T ), which

represents the expected profit of a given policy π over a selling horizon of T periods. Specifically:

J π(F (N), T ) :=

τ−1∑
t=1

∑
i∈ψt(Ht−1)

wipi(ψt(Ht−1), F
1) +

T∑
t=τ

∑
i∈ψt(Ht−1)

wipi(ψt(Ht−1), F
τ ),

where the assortment policy is π ∈ P, defined as π := (ψt(Ht−1) : 1 ≤ t ≤ T ). Next, we show

that the expected value of the random variable J π(F (N), T ), taken with respect to Pπτ , is simply

the expected cumulative revenue achieved by policy π.

Lemma 8. For T ≥ 2, we have that Jπ(F (N), T ) = EPπ
τ

[
J π(F (N), T )

]
.

Proof. In the following proof, we omit the dependence of the policy π ∈ P on the filtration (Ht)
T
t=0
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to simplify the notations. Specifically, we denote ψt (Ht−1) simply by ψt for t ∈ [T ]. Then:

Jπ(F (N), T ) = EPπ
τ

[ T∑
t=1

∑
i∈ψt

wi1(it = i)
]
= EPπ

τ

[ τ−1∑
t=1

∑
i∈ψt

wi1(it = i)
]
+ EPπ

τ

[ T∑
t=τ

∑
i∈ψt

wi1(it = i)
]
,

= EPπ
τ

[ τ−1∑
t=1

∑
i∈ψt

wi1
(
it = i ∈ ψt, U

a
it > Uaj , ∀ j ∈ ψt ∪ {0} \ {it}

)]
+ EPπ

τ

[ T∑
t=τ

∑
i∈ψt

wi1
(
it = i ∈ ψt, U

b
it > U bj , ∀ j ∈ ψt ∪ {0} \ {it}

)
,
]

(a)
= EPπ

τ

[
EPπ

τ

[ τ−1∑
t=1

∑
it=i∈ψt

wi1
(
it = i ∈ ψt, U

a
it > Uaj , ∀ j ∈ ψt ∪ {0} \ {it}

)
| Ht−1

]]
+ EPπ

τ

[
EPπ

τ

[ T∑
t=τ

∑
i∈ψt

wi1
(
it = i ∈ ψt, U

b
it > U bj , ∀ j ∈ ψt ∪ {0} \ {it}

)
| Ht−1

]]
(b)
= EPπ

τ

[ τ−1∑
t=1

∑
i∈ψt

wiEPπ
τ

[
1
(
it = i ∈ ψt, U

a
it > Uaj , ∀ j ∈ ψt ∪ {0} \ {it}

)
| Ht−1

]]
+ EPπ

τ

[ T∑
t=τ

∑
i∈ψt

wiEPπ
τ

[
1
(
it = i ∈ ψt, U

b
it > U bj , ∀ j ∈ ψt ∪ {0} \ {it}

)
| Ht−1

]]
(c)
=

τ−1∑
t=1

EPπ
τ

[∑
i∈ψt

wipi
(
ψt, F

1
) ]

+
T∑
t=τ

EPπ
τ

[∑
i∈ψt

wipi (ψt, F
τ )
]
= EPπ

τ

[
J π(F (N), T )

]
,

where, step (a) follows from the Law of Total Expectation (Jacod and Protter 2012), step (b) follows

from moving the summation outside the expectation, and step (c) is a consequence of the definition

of the probability of purchase pi (S, F ). ■

As a consequence of Lemma 8, the difference between the expected revenue achieved by the

oracle and that achieved by policy π can be decomposed into two components: the regret incurred

before the change occurs, and the regret incurred after the change. Formally,

Corollary 2. For F (N) ∈ FA, we have that, for T ≥ 2:

J∗(F (N), T )− Jπ(F (N), T ) = EPπ
τ

[ τ−1∑
t=1

(
r(S∗(F 1), F 1)− r(ψt(Ht−1), F

1)
)]

+ EPπ
τ

[ T∑
t=τ

(
r(S∗(F τ ), F τ )− r(ψt(Ht−1), F

τ )
)]
.

Proof. The proof immediately follows from Lemma 8. ■

Next, we formally define and derive a closed-form expression for the probability of purchase

over a finite sequence of T customers, denoted by Pπℓ . Customer purchase decisions are modeled
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as a random vector Z with dimension T ×N . Moreover, for any assortment S ∈ S, we denote by

F (· | S) the conditional distribution of F given the offered assortment S.

Lemma 9. Let z ∈ {0, 1}T×N be some customers’ purchase realization, and π ∈ P an admissible

policy such that π := (ψt(Ht−1) | 1 ≤ t ≤ T ). Then, for any given time ℓ ∈ [T ], we have:

Pπℓ
[
Z = z

]
=

ℓ−1∏
t=1

F 1(zt | ψt(Ht−1))

T∏
t=ℓ

F τ (zt | ψt(Ht−1)).

In particular, if there exists t ∈ [T ] such that zti = 1 for some i ∈ N and i /∈ ψt(Ht−1), then:

Pπℓ
[
Z = z

]
= 0.

Proof. All customers are assumed to act independently according to their own intrinsic utility.

Accordingly, the distribution of the purchase decision of customer t is independent of the purchase

decisions of customers 1 to t− 1. Thus, the following sequence of equalities holds:

Pπℓ
[
Z = z

]
= Pπℓ

[
Zt = zt, 1 ≤ t ≤ T

]
=

T∏
t=1

Pπℓ
[
Zt = zt | Z t̃ = z t̃, 1 ≤ t̃ ≤ t− 1

]
=

T∏
t=1

Pπℓ
[
Zt = zt | Ht−1

]
=

ℓ−1∏
t=1

F 1(zt | π ,Ht−1)

T∏
t=ℓ

F τ (zt | π ,Ht−1) =

ℓ−1∏
t=1

F 1(zt | ψt(Ht−1))

T∏
t=ℓ

F τ (zt | ψt(Ht−1)).

Next, assume that there exists t ∈ [T ] such that zi,t = 1 for some product i ∈ N , which does not

belong to the assortment ψt, that is, ψt(Ht−1)i = 0. Then, recall that pi(ψt(Ht−1), F ) = 0, for all i /∈

ψt, and F ∈ {F 1, F τ}. Consequently, F 1(zt | ψt(Ht−1)) = 0 if t ≤ ℓ− 1, and F τ (zt | ψt(Ht−1)) = 0

if t ≥ ℓ. Therefore, we have that Pπℓ
[
Z = z

]
= 0, which concludes the proof. ■

The distribution Pπℓ denotes the probability measure induced over the purchase outcomes for

a particular change scenario, parameterized by the change time. The similarity between two such

scenarios is quantified using the KL divergence between their respective distributions. Lemma 10

provides a closed-form expression for this divergence.

Lemma 10. For ℓj , ℓj+1 ∈ {1, . . . , T}, let K(Pπℓj+1
,Pπℓj ) denote the KL divergence between the two

probability measures Pπℓj and Pπℓj+1
. Then, we have that:

K(Pπℓj+1
,Pπℓj ) =

ℓj+1−1∑
t=ℓj

EPπ
ℓj+1

[
log

F 1(Zt | ψt(Ht−1))

F τ (Zt | ψt(Ht−1))

]
.
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Proof. To begin, the KL divergence between Pπℓj+1
and Pπℓj is formally defined as follows:

K(Pπℓj+1
,Pπℓj ) = EPπ

ℓj+1

[
log

Pπℓj+1

[
Z
]

Pπℓj
[
Z
] ],

where Z is the random vector representing the customer’s purchase decisions over the horizon T .

Next, we leverage the closed-form formula for the distribution of Z from Lemma 9 to obtain

the desired result. Specifically, the following sequence of equalities holds:

K(Pπℓj+1
,Pπℓj ) = EPπ

ℓj+1

log
ℓj+1−1∏
t=1

F 1(Zt | ψt(Ht−1))
T∏

t=ℓj+1

F τ (Zt | ψt(Ht−1))

ℓj−1∏
t=1

F 1(Zt | ψt(Ht−1))
T∏
t=ℓj

F τ (Zt | ψt(Ht−1))



= EPπ
ℓj+1

log
ℓj+1−1∏
t=ℓj

F 1(Zt | ψt(Ht−1))

ℓj+1−1∏
t=ℓj

F τ (Zt | ψt(Ht−1))

 =

ℓj+1−1∑
t=ℓj

EPπ
ℓj+1

[
log

F 1(Zt | ψt(Ht−1))

F τ (Zt | ψt(Ht−1))

]
,

which concludes the proof. ■

In the following lemma, we define the maximum KL divergence between F 1 and F τ , conditional

on an assortment S ∈ S. By the definition of F (in Section 3), we have F (z | S) ∈ (0, 1) for all

z ∈ {0, 1}N such that ∥z∥1 ≤ 1, where zi = 0 for any i /∈ S, given S ∈ S and F ∈ {F 1, F τ}. Since

F 1(z | S) = 0 whenever zi = 1 for some i /∈ S, the KL divergence between F 1(· | S) and F τ (· | S)

is well-defined, ensuring K(F 1 , F τ ; S) < ∞. Furthermore, because the set of assortments S is

finite, the maximum KL divergence (taken over all assortments S ∈ S) is also well-defined. The

maximum KL divergence between F 1 and F τ , conditional on S, is defined by :

K(F 1, F τ ) ≡ max
{
K(F 1 , F τ ; S) : S ∈ S

}
.

Lemma 11. We have that 0 < K(F 1, F τ ) <∞.

Proof. By the definition of KL divergence, together with the definition of F , we have that, for any

S ∈ S, 0 ≤ K(F 1 , F τ ; S) <∞. Since S is finite, it follows that:

0 ≤ K(F 1, F τ ) <∞.

We show that K(F 1, F τ ) > 0 by contradiction. Hence, assume for the sake of contradic-

tion that K(F 1 , F τ ; S) = 0 for all S ∈ S. By the properties of the KL divergence, this im-

plies F 1 (· | S) = F τ (· | S) for all S ∈ S. Consequently, the optimal assortments S∗(F 1) and

S∗(F τ ), corresponding to F 1 and F τ , respectively, must be identical, i.e., S∗(F 1) = S∗(F τ ). This
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result contradicts the assumption that the pre- and post-change optimal assortment are different.

Therefore, we conclude that K(F 1, F τ ) > 0, completing the proof. ■

Next, we assume that T ≥ 2 is fixed and segment the time horizon T into sub-segments of

size ∆ ∈ [T ]. Let T̃ − 1 = ⌈T/∆⌉ − 1 denote the number of such sub-segments. We define the

indices (ℓj)
T̃−1
j=0 as follows: ℓ0 = 1, and ℓj = ℓj−1 + ∆ for j ∈ [T̃ − 1]. Note that the final sub-

segment, T̃ − 1, may have a cardinality less than ∆. Moreover, given two assortments S, S̃ ∈ S, we

denote by ∥S − S̃∥1 the Hamming distance between their respective binary encodings.

Lemma 12. Assume that the two distributions F 1 and F τ are equal conditional on the assort-

ment S∗(F 1). Then, given some index j ∈ [T̃ − 1], the following inequality holds:

EPπ
ℓj+1

[ ℓj+1−1∑
t=ℓj

1
(
∥ψt(Ht−1)− S∗(F 1)∥1 > 0

)]
≥

K(Pπℓj+1
,Pπℓj )

K(F 1, F τ )
.

Proof. To simplify the notations within this proof, we omit the explicit dependence of π on the

filtration (Ht)
T
t=1. That is, we refer to ψt (Ht−1) as ψt for all t ∈

[
T
]
. By Lemma 10, we have

K(Pπℓj+1
,Pπℓj ) =

ℓj+1−1∑
t=ℓj

EPπ
ℓj+1

[
log

F 1
(
Zt | ψt

)
F τ (Zt | ψt)

]
.

For t ∈ {ℓj , . . . , ℓj+1 − 1}, by using the Law of Total Expectation (Jacod and Protter 2012), we

obtain the following equality:

EPπ
ℓj+1

[
log

F 1(Zt | ψt)
F τ (Zt | ψt)

]
= EPπ

ℓj+1

[
EPπ

ℓj+1

[
log

F 1(Zt | ψt)
F τ (Zt | ψt)

| ψt
]]
.

Fix a feasible assortment S ∈ S arbitrarily. If the purchase decisions over the all the time periods

are Pπℓj+1
distributed, then the random vector Zt, which models consumer purchase decision at time

t, is F 1 distributed (conditional on assortment ψt). Thus, the following equalities hold:

EPπ
ℓj+1

[
log

F 1(Zt | ψt)
F τ (Zt | ψt)

| ψt(Ht−1) = S
]
=

∑
z∈{0.1}N

1(zi = 0 , ∀ i /∈ S)F 1(z | S) log F
1(z | S)

F τ (z | S)

= K(F 1 , F τ ; S).

Therefore, the following sequence of inequalities holds:

EPπ
ℓj+1

[
log

F 1
(
Zt | ψt

)
F τ (Zt | ψt)

]
= EPπ

ℓj+1

[
K(F 1 , F τ ; ψt)1

(
ψt = S∗(F 1)

)]
+ EPπ

ℓj+1

[
K(F 1 , F τ ; ψt)1

(
ψt ̸= S∗(F 1)

)]
(a)
= EPπ

ℓj+1

[
K(F 1 , F τ ; ψt)1

(
ψt ̸= S∗(F 1)

)]
(b)

≤ K(F 1, F τ )EPπ
ℓj+1

[
1
(
∥ψt − S∗(F 1)∥1 > 0

)]
,
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where (a) follows by the assumption that F 1 and F τ are different, conditional on the pre-change

optimal assortment S∗(F 1), and (b) follows by the definition of K(F 1, F τ ).

Therefore, summing over t yields:

K(Pπℓj+1
,Pπℓj ) ≤ K(F 1, F τ )

ℓj+1−1∑
t=ℓj

EPπ
ℓj+1

[
1
(
∥ψt − S∗(F 1)∥1 > 0

)]
,

which concludes the proof. ■
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